Advertisement

Embedding CCSL into Dynamic Logic: A Logical Approach for the Verification of CCSL Specifications

  • Yuanrui Zhang
  • Hengyang Wu
  • Yixiang Chen
  • Frédéric MalletEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1008)

Abstract

The Clock Constraint Specification Language (CCSL) is a clock-based specification language for capturing causal and chronometric constraints between events in Real-Time Embedded Systems (RTESs). Due to the limitations of the existing verification approaches, CCSL lacks a full verification support for ‘unsafe CCSL specifications’ and a unified proof framework. In this paper, we propose a novel verification approach based on theorem proving and SMT-checking. We firstly build a logic called CCSL Dynamic Logic (CDL), which extends the traditional dynamic logic with ‘signals’ and ‘clock relations’ as primitives, and with synchronous execution mechanism for modelling RTESs. Then we propose a sound and relatively complete proof system for CDL to provide the verification support. We show how CDL can be used to capture RTES and verify CCSL specifications by analyzing a simple case study.

References

  1. 1.
    OMG: UML profile for MARTE: Modeling and analysis of real-time embedded systems. Technical report, OMG, June 2011. Formal 02 June 2011Google Scholar
  2. 2.
    Mallet, F.: Clock constraint specification language: specifying clock constraints with UML/MARTE. ISSE 4(3), 309–314 (2008)Google Scholar
  3. 3.
    André, C.: Syntax and semantics of the clock constraint specification language (CCSL). Research Report RR-6925, INRIA (2009)Google Scholar
  4. 4.
    Mallet, F., de Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci. Comput. Program. 106, 78–92 (2015)CrossRefGoogle Scholar
  5. 5.
    Mallet, F., Millo, J.V., de Simone, R.: Safe CCSL specifications and marked graphs. In: 11th ACM/IEEE International Conference on Formal Methods and Models for Codesign, pp. 157–166, IEEE (2013)Google Scholar
  6. 6.
    Zhang, M., Ying, Y.: Towards SMT-based LTL model checking of clock constraint specification language for real-time and embedded systems. In: LCTES 2017, pp. 61–70. ACM (2017)CrossRefGoogle Scholar
  7. 7.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. SIGACT News 32(1), 66–69 (2001)CrossRefGoogle Scholar
  8. 8.
    Harel, D. (ed.): First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg (1979).  https://doi.org/10.1007/3-540-09237-4CrossRefzbMATHGoogle Scholar
  9. 9.
    Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic Publisher, Dordrecht (1993)CrossRefGoogle Scholar
  10. 10.
    Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical report, Department of Computer Science, The University of Iowa (2017). www.SMT-LIB.org
  11. 11.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45949-9CrossRefzbMATHGoogle Scholar
  12. 12.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-07964-5CrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, M., Mallet, F., Zhu, H.: An SMT-based approach to the formal analysis of MARTE/CCSL. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 433–449. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47846-3_27CrossRefGoogle Scholar
  14. 14.
    Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)CrossRefGoogle Scholar
  15. 15.
    Gentzen, G.: Untersuchungen über das logische Schließen. Ph.D. thesis, NA, Göttingen (1934)Google Scholar
  16. 16.
    Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14509-4CrossRefzbMATHGoogle Scholar
  17. 17.
    André, C., Mallet, F.: Specification and verification of time requirements with CCSL and Esterel. In: LCTES 2009, pp. 167–176. ACM (2009)Google Scholar
  18. 18.
    Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40561-7_1CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Mallet, F., Chen, Y.: Timed automata semantics of spatio-temporal consistency language STeC. In: TASE 2014, pp. 201–208, IEEE (2014)Google Scholar
  20. 20.
    Zhang, M., Dai, F., Mallet, F.: Periodic scheduling for MARTE/CCSL: theory and practice. Sci. Comput. Program. 154, 42–60 (2018)CrossRefGoogle Scholar
  21. 21.
    Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72734-7_32CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuanrui Zhang
    • 1
  • Hengyang Wu
    • 1
  • Yixiang Chen
    • 1
  • Frédéric Mallet
    • 2
    Email author
  1. 1.MoE Engineering Research Center for Software/Hardware Co-design Technology and ApplicationEast China Normal UniversityShanghaiChina
  2. 2.Université Cote d’Azur, I3S, CNRS, InriaSophia AntipolisFrance

Personalised recommendations