Advertisement

Synthesizing and Optimizing FDIR Recovery Strategies from Fault Trees

  • Liana Mikaelyan
  • Sascha MüllerEmail author
  • Andreas Gerndt
  • Thomas Noll
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1008)

Abstract

Redundancy concepts are an integral part of the design of space systems. Deciding when to activate which redundancy and which component should be replaced can be a difficult task. In this paper, we refine a methodology where recovery strategies are synthesized from a model of non-deterministic dynamic fault trees. The synthesis is performed by transforming non-deterministic dynamic fault trees into Markov Automata. From the optimized scheduler, an optimal recovery strategy can then be derived and represented by a model we call Recovery Automaton. We discuss techniques on how this Recovery Automaton can be further optimized to contain fewer states and transitions and show the effectiveness of our approach on two case studies.

Keywords

FDIR Fault Tree Analysis Synthesis Formal methods 

References

  1. 1.
    Beccuti, M., Franceschinis, G., Codetta-Raiteri, D., Haddad, S.: Computing optimal repair strategies by means of NdRFT modeling and analysis. Comput. J. 57(12), 1870–1892 (2014).  https://doi.org/10.1093/comjnl/bxt134CrossRefGoogle Scholar
  2. 2.
    Bittner, B., et al.: An integrated process for FDIR design in aerospace. In: Ortmeier, F., Rauzy, A. (eds.) IMBSA 2014. LNCS, vol. 8822, pp. 82–95. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12214-4_7CrossRefGoogle Scholar
  3. 3.
    Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliab. Eng. Syst. Saf. 71(3), 249–260 (2001).  https://doi.org/10.1016/S0951-8320(00)00077-6CrossRefGoogle Scholar
  4. 4.
    Codetta-Raiteri, D., Portinale, L.: Dynamic Bayesian networks for fault detection, identification, and recovery in autonomous spacecraft. IEEE Trans. Syst. Man Cybern.: Syst. 45(1), 13–24 (2015).  https://doi.org/10.1109/TSMC.2014.2323212CrossRefGoogle Scholar
  5. 5.
    Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992).  https://doi.org/10.1109/24.159800CrossRefzbMATHGoogle Scholar
  6. 6.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: IEEE Symposium on Logic in Computer Science, pp. 342–351. IEEE (2010).  https://doi.org/10.1109/LICS.2010.41
  7. 7.
    Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduction and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40196-1_5CrossRefGoogle Scholar
  8. 8.
    Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In: Theory of Machines and Computations, pp. 189–196. Elsevier (1971).  https://doi.org/10.1016/B978-0-12-417750-5.50022-1CrossRefGoogle Scholar
  9. 9.
    International Electrotechnical Commission, Geneva, Switzerland: Fault Tree Analysis (FTA) (2006)Google Scholar
  10. 10.
    Kildall, G.A.: A unified approach to global program optimization. In: Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 194–206. ACM (1973).  https://doi.org/10.1145/512927.512945
  11. 11.
    Müller, S., Gerndt, A., Noll, T.: Synthesizing FDIR recovery strategies from non-deterministic dynamic fault trees. In: 2017 AIAA SPACE Forum, AIAA 2017-5163. American Institute of Aeronautics and Astronautics (2017).  https://doi.org/10.2514/6.2017-5163
  12. 12.
    Raiteri, D.C., Portinale, L.: Arpha: an FDIR architecture for autonomous spacecrafts based on dynamic probabilistic graphical models. Technical report TR-INF-2010-12-04-UNIPMN, Computer Science Institute, Università del Piemonte Orientale, Vercelli, Italy, December 2010. http://www.di.unipmn.it/TechnicalReports/TR-INF-2010-12-04-UNIPMN.pdf
  13. 13.
    Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015).  https://doi.org/10.1016/j.cosrev.2015.03.001MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook. Technical report, Nuclear Regulatory Commission, Washington, DC (1981). https://www.osti.gov/biblio/5762464-fault-tree-handbook
  15. 15.
    Wander, A., Förstner, R.: Innovative fault detection, isolation and recovery strategies on-board spacecraft: state of the art and research challenges. In: Deutscher Luft- und Raumfahrtkongress 2012. German Society for Aeronautics and Astronautics - Lilienthal-Oberth e.V., Bonn, Germany, January 2013. https://www.dglr.de/publikationen/2013/281268.pdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Software for Space Systems and Interactive Visualization, DLR (German Aerospace Center)BraunschweigGermany
  2. 2.Software Modeling and Verification GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations