Model Transformation with Triple Graph Grammars and Non-terminal Symbols

  • William da SilvaEmail author
  • Max Bureck
  • Ina Schieferdecker
  • Christian Hein
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1008)


This work proposes a new graph grammar formalism, that introduces non-terminal symbols to triple graph grammars (TGG) and shows how to apply it to solving the model transformation problem. Our proposed formalism seems to suit code generation from models well, outperforms the standard TGG in the grammar size in one evaluated case and is able to express one transformation that we could not express with TGG. We claim, that such advantages make a formal specification written in our formalism easier to validate and less error-prone, what befits safety-critical systems specially well.


NCE graph grammars Triple graph grammars Model transformation Model-based development 


  1. 1.
    Anjorin, A., Leblebici, E., Schürr, A.: 20 years of triple graph grammars: a roadmap for future research. Electron. Commun. EASST 73 (2016).
  2. 2.
    Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph grammars using rule refinement. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 340–354. Springer, Heidelberg (2014). Scholar
  3. 3.
    Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta-modelling aspects with graph transformation for efficient visual language definition and model manipulation. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 214–228. Springer, Heidelberg (2004). Scholar
  4. 4.
    Brandenburg, F.J., Skodinis, K.: Finite graph automata for linear and boundary graph languages. Theor. Comput. Sci. 332(1–3), 199–232 (2005). Scholar
  5. 5.
    Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). Scholar
  6. 6.
    Drewes, F., Hoffmann, B., Minas, M.: Predictive shift-reduce parsing for hyperedge replacement grammars. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 106–122. Springer, Cham (2017). Scholar
  7. 7.
    Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars. In: Handbook Of Graph Grammars and Computing by Graph Transformation: Volume 1: Foundations, pp. 95–162. World Scientific (1997). Scholar
  8. 8.
    Ehrig, H., Rozenberg, G., Kreowski, H.J., Montanari, U.: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 3. World Scientific, Singapore (1999). Scholar
  9. 9.
    Engelfiet, J., Rozenberg, G.: A comparison of boundary graph grammars and context-free hypergraph grammars. Inf. Comput. 84(2), 163–206 (1990). Scholar
  10. 10.
    Flasiński, M.: Power properties of NLC graph grammars with a polynomial membership problem. Theor. Comput. Sci. 201(1–2), 189–231 (1998). Scholar
  11. 11.
    Flasiński, M.: On the parsing of deterministic graph languages for syntactic pattern recognition. Pattern Recognit. 26(1), 1–16 (1993). Scholar
  12. 12.
    Flasiński, M., Flasińska, Z.: Characteristics of bottom-up parsable edNLC graph languages for syntactic pattern recognition. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 195–202. Springer, Cham (2014). Scholar
  13. 13.
    Hermann, F., Ehrig, H., Taentzer, G.: A typed attributed graph grammar with inheritance for the abstract syntax of UML class and sequence diagrams. Electron. Notes Theor. Comput. Sci. 211, 261–269 (2008). Scholar
  14. 14.
    Hoffmann, B.: Graph transformation with variables. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 101–115. Springer, Heidelberg (2005). Scholar
  15. 15.
    Janssens, D., Rozenberg, G.: Graph grammars with neighbourhood-controlled embedding. Theor. Comput. Sci. 21(1), 55–74 (1982). Scholar
  16. 16.
    Kim, C.: Efficient recognition algorithms for boundary and linear eNCE graph languages. Acta Inform. 37(9), 619–632 (2001). Scholar
  17. 17.
    Kim, C.: On the structure of linear apex NLC graph grammars. Theor. Comput. Sci. 438, 28–33 (2012). Scholar
  18. 18.
    Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended triple graph grammars with efficient and compatible graph translators. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven Engineering. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg (2010). Scholar
  19. 19.
    Rozenberg, G., Welzl, E.: Boundary NLC graph grammars-basic definitions, normal forms, and complexity. Inf. Control. 69(1–3), 136–167 (1986). Scholar
  20. 20.
    Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995). Scholar
  21. 21.
    Skodinis, K., Wanke, E.: Neighborhood-preserving node replacements. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 45–58. Springer, Heidelberg (2000). Scholar
  22. 22.
    Wanke, E.: Algorithms for graph problems on BNLC structured graphs. Inf. Comput. 94(1), 93–122 (1991). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • William da Silva
    • 1
    • 2
    Email author
  • Max Bureck
    • 1
  • Ina Schieferdecker
    • 1
    • 2
  • Christian Hein
    • 1
  1. 1.Fraunhofer FokusBerlinGermany
  2. 2.Technische Universität BerlinBerlinGermany

Personalised recommendations