Advertisement

Testing the Effect of MOSSFA (Marine Oil Snow Sedimentation and Flocculent Accumulation) Events in Benthic Microcosms

  • Edwin M. FoekemaEmail author
  • Justine S. van Eenennaam
  • David J. Hollander
  • Alette M. Langenhoff
  • Thomas B. P. Oldenburg
  • Jagoš R. Radović
  • Melissa Rohal
  • Isabel C. Romero
  • Patrick T. Schwing
  • Albertinka J. Murk
Chapter

Abstract

In multispecies experiments performed in microcosms with natural sediment, it was investigated how the presence of marine snow affects the fate and ecological impact of deposited oil residues. The response of different taxonomic groups like nematodes, foraminifera, crustaceans and molluscs onto the presence of marine snow with or without oil was compared with the impact of deposited oil residues without marine snow. Also the effect of the presence of marine snow on oil biodegradation and transfer of oil-derived compounds to selected biota was studied. Although not designed to mimic the specific deep sea conditions in the Gulf of Mexico, the outcome of the experiments gave new insights in how a MOSSFA event can affect the benthic community. In general the experiments indicate that at field realistic oil-derived compound concentrations, the adverse impact of the marine snow on the sediment surface has a stronger impact on the benthic ecosystem than the oil’s toxicity on its own. In addition, the presence of marine snow reduces the degradation of the oil and can create an exposure route for animals that consume oiled marine snow and thus potentially enhances the ecological impact further.

Keywords

MOSSFA Ecological impact Sediment Macroinvertebrates Meiofauna 

Notes

Acknowledgements

This research was made possible by a grant from the Gulf of Mexico Research Initiative/C-IMAGE I, II and III. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi: [10.7266/n7-bpgc-0b13, 10.7266/N74J0CRK, 10.7266/N7T72FJK])

References

  1. Baguley JG, Montagna PA, Cooksey C, Hyland JL, Bang HW, Morrison C, Kamikawa A, Bennetts P, Saiyo G, Parsons E, Herdener M, Ricci M (2015) Community response of the deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Mar Ecol Prog Ser 528:127–140.  https://doi.org/10.3354/meps11290CrossRefGoogle Scholar
  2. Bianchi TS, Cook RL, Perdue EM, Kolic PE, Green N, Zhang Y, Smith RW, Kolker AS, Ameen A, King G, Ojwang LM, Schneider CL, Normand AE, Hetland R (2011) Impacts of diverted freshwater on dissolved organic matter and microbial communities in Barataria Bay, Louisiana, U.S.A. Mar Environ Res 72:248–257.  https://doi.org/10.1016/j.marenvres.2011.09.007CrossRefGoogle Scholar
  3. BP Gulf Science Data (2017) Application of dispersants to surface oil slicks by aircraft and by boat in approved areas of the Gulf of Mexico from April 22, 2010 to final application on July 19, 2010. Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University-Corpus Christi. Available from: http://data.gulfresearchinitiative.org/data/BP.x750.000:0017
  4. Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart G-J, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout. PLoS One 10:e0132341.  https://doi.org/10.1371/journal.pone.0132341CrossRefGoogle Scholar
  5. Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33.  https://doi.org/10.1016/j.ancene.2016.01.006CrossRefGoogle Scholar
  6. Dell’Amore C (2010) “Sea Snot” explosion caused by Gulf Oil Spill? Retrieved from http://news.nationalgeographic.com/news/2010/09/100916-sea-snot-gulf-bp-oil-spill-marine-snow-science-environment/
  7. Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL, Roeder T, Quinn KA, Bartlett T, Romero IC, Hollander DJ (2016) Changes in sediment redox conditions following the BP DWH blowout event. Deep-Sea Res Part II Top Stud Oceanogr 129:167–178.  https://doi.org/10.1016/j.dsr2.2014.12.009CrossRefGoogle Scholar
  8. Hu C, Weisberg RH, Liu Y, Zheng L, Daly KL, English DC, Zhao J, Vargo GA (2011) Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophys Res Lett 38:L09601.  https://doi.org/10.1029/2011gl047184CrossRefGoogle Scholar
  9. Montagna PA, Baguley JG, Cooksey C, Hartwell I, Hyde LJ, Hyland JL, Kalke RD, Kracker LM, Reuscher M, Rhodes ACE (2013) Deep-Sea benthic footprint of the Deepwater Horizon Blowout. PLoS One 8(8):e70540CrossRefGoogle Scholar
  10. O’Connor B (2013) Impacts of the anomalous Mississippi River discharge and diversions on phytoplankton blooming in Northeastern Gulf of Mexico. University of South Florida. http://scholarcommons.usf.edu/etd/4736/
  11. Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7:035301.  https://doi.org/10.1088/1748-9326/7/3/035301CrossRefGoogle Scholar
  12. Raffaelli DG, Mason CF (1981) Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar Pollut Bull 12:158–163CrossRefGoogle Scholar
  13. Romero IC, Toro-Farmer G, Diercks A-R, Schwing P, Muller-Karger F, Murawski S, Hollander DJ (2017) Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ Pollut 228:179–189.  https://doi.org/10.1016/j.envpol.2017.05.019CrossRefGoogle Scholar
  14. Schwing PT, Romero IC, Brooks GR (2015) A decline in deep-sea benthic foraminifera following the Deepwater Horizon event in the Northeastern Gulf of Mexico. PLOS One 10(3):e0120565.  https://doi.org/10.1371/journal.pone.0120565CrossRefGoogle Scholar
  15. Schwing PT, O’Malley BJ, Romero IC (2017) Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environ Sci Pollut Res.  https://doi.org/10.1016/j.ecolind.2017.09.044CrossRefGoogle Scholar
  16. Schwing PT, O’Malley BJ, Hollander DJ (2018) Resilience of benthic foraminifera in the Northern Gulf of Mexico Following the Deepwater Horizon Event (2011–2015). Ecol Indic 84:753–764.  https://doi.org/10.1016/j.ecolind.2017.09.044CrossRefGoogle Scholar
  17. Van Eenennaam JS, Wei YZ, Grolle KCF, Foekema EM, Murk AJ (2016) Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria. Mar Pollut Bull 104:294–302. https://doi.org/10.1016/j.marpolbul.2016.01.005CrossRefGoogle Scholar
  18. Van Eenennaam JS, Rahsepar S, Radović JR, Oldenburg TBP, Wonink J, Langenhoff AAM, Murk AJ, Foekema EM (2018) Marine snow increases the adverse effects of oil on benthic invertebrates. Mar Pollut Bull 126:339–348.  https://doi.org/10.1016/j.marpolbul.2017.11.028CrossRefGoogle Scholar
  19. Van Eenennaam JS, Rohal M, Montagna PA, Radović JR, Oldenburg TBP, Romero IC, Murk AJ, Foekema EM (2019) Ecotoxicological benthic impacts of experimental oil-contaminated marine snow deposition Mar Pollut Bull 141:164–175.  https://doi.org/10.1016/j.marpolbul.2019.02.025CrossRefGoogle Scholar
  20. Washburn TW, Reuscher MG, Montagna PA, Cooksey C, Hyland JL (2017) Macrobenthic community structure in the deep Gulf of Mexico one year after the Deepwater Horizon blowout. Deep-Sea Res I Oceanogr Res Pap 127(2017):21–30.  https://doi.org/10.1016/j.dsr.2017.06.001CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Edwin M. Foekema
    • 1
    • 2
    Email author
  • Justine S. van Eenennaam
    • 3
    • 4
  • David J. Hollander
    • 5
  • Alette M. Langenhoff
    • 3
  • Thomas B. P. Oldenburg
    • 6
  • Jagoš R. Radović
    • 6
  • Melissa Rohal
    • 7
  • Isabel C. Romero
    • 5
  • Patrick T. Schwing
    • 5
  • Albertinka J. Murk
    • 1
  1. 1.Wageningen University & Research, Marine Animal Ecology GroupWageningenThe Netherlands
  2. 2.Wageningen Marine ResearchDen HelderThe Netherlands
  3. 3.Wageningen University & Research, Sub-department of Environmental TechnologyWageningenThe Netherlands
  4. 4.Regulatory Affairs Department, Safety Assessment, Charles River Laboratories‘s-HertogenboschThe Netherlands
  5. 5.University of South Florida, College of Marine ScienceSt. PetersburgUSA
  6. 6.University of Calgary, PRG, Department of GeoscienceCalgaryCanada
  7. 7.Texas A&M University – Corpus Christi, Harte Research Institute for Gulf of Mexico Studies, Unit 5869Corpus ChristiUSA

Personalised recommendations