Advertisement

Fusion of the Infrared Imaging and the Ultrasound Techniques to Enhance the Sub-surface Characterization

  • Stamatios AmanatiadisEmail author
  • Georgios Apostolidis
  • Georgios Karagiannis
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 962)

Abstract

In this paper, the techniques of high-frequency ultrasound and infrared imaging are combined to enhance the sub-surface characterization of cultural heritage artworks. Initially, these two different modalities are studied independently focusing on the extraction of an art object’s stratigraphy through acoustic microscopy and the distinction of materials, such as pigments, via their infrared fingerprint. Moreover, post-processing procedures are utilized separately for each technique to maximize the information of the acquired data. Then, robust registration methods are presented and applied on the images in order to align them spatially facilitating their fusion. Finally, the entire process is summarized in a block diagram and the fused images are presented, revealing the enhanced perspective of the artwork’s sub-surface details.

Keywords

Fusion Ultrasound IR imaging Non-destructive evaluation 

Notes

Acknowledgement

This work is part of Scan4Reco project that has received funding from the European Union Horizon 2020 Framework Programme for Research and Innovation under grant agreement no 665091.

References

  1. 1.
    Karagiannis, G., et al.: Three-dimensional nondestructive “sampling” of art objects using acoustic microscopy and time-frequency analysis. IEEE Trans. Instrum. Meas. 60(9), 3082–3109 (2011)CrossRefGoogle Scholar
  2. 2.
    Targowski, P., Iwanicka, M.: Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review. Appl. Phys. A 106(2), 265–277 (2012)CrossRefGoogle Scholar
  3. 3.
    Zielińska, A., et al.: X-ray fluorescence imaging system for fast mapping of pigment distributions in cultural heritage paintings. J. Instrum. 8(10), P10011 (2013)CrossRefGoogle Scholar
  4. 4.
    Sarmiento, A., et al.: Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis. Anal. Bioanal. Chem. 399(10), 3601–3611 (2011)CrossRefGoogle Scholar
  5. 5.
    Attas, M., et al.: Near-infrared spectroscopic imaging in art conservation: investigation of drawing constituents. J. Cult. Heritage 4(2), 127–136 (2003)CrossRefGoogle Scholar
  6. 6.
    Fukunaga, K., Hosako, I.: Innovative non-invasive analysis techniques for cultural heritage using terahertz technology. C.R. Phys. 11(7–8), 519–526 (2010)CrossRefGoogle Scholar
  7. 7.
    Filippidis, G., et al.: Nonlinear imaging and THz diagnostic tools in the service of Cultural Heritage. Appl. Phys. A 106(2), 257–263 (2012)CrossRefGoogle Scholar
  8. 8.
    Briggs, A.: Advances in Acoustic Microscopy, vol. 1. Springer, New York (2013)Google Scholar
  9. 9.
    Rose, J.L.: Ultrasonic Guided Waves in Solid Media. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  10. 10.
    Cheeke, J., David, N.: Fundamentals and Applications of Ultrasonic Waves. CRC Press, Boca Raton (2012)CrossRefGoogle Scholar
  11. 11.
    Yu, Z., Boseck, S.: Scanning acoustic microscopy and its applications to material characterization. Rev. Mod. Phys. 67(4), 863 (1995)CrossRefGoogle Scholar
  12. 12.
    Karagiannis, G., et al.: Processing of UV/VIS/nIR/mIR diffuse reflectance spectra and acoustic microscopy echo graphs for stratigraphy determination, using neural networks and wavelet transform. In: IEEE ICTTA, pp. 1–7 (2008)Google Scholar
  13. 13.
    Griffiths, P.R., De Haseth, J.A.: Fourier Transform Infrared Spectrometry, vol. 171. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  14. 14.
    Hariharan, P.: Basics of Interferometry. Academic Press, San Diego (2010)Google Scholar
  15. 15.
    Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4), 325–376 (1992)CrossRefGoogle Scholar
  16. 16.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  17. 17.
    Barnea, D.I., Silverman, H.F.: A class of algorithms for fast digital image registration. IEEE Trans. Comput. 21, 179–186 (1972)CrossRefGoogle Scholar
  18. 18.
    Althof, R.J., Wind, M.G.J., Dobbins, J.T.: A rapid and automatic image registration algorithm with subpixel accuracy. IEEE Trans. Med. Imaging 16, 308–316 (1997)CrossRefGoogle Scholar
  19. 19.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  20. 20.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rockinger, O.: Image sequence fusion using a shift-invariant wavelet transform. In: IEEE International Conference on Image Processing 1997, vol. 3, pp. 288–291 (1997)Google Scholar
  22. 22.
    Nikolov, S., Hill, P., Bull, D., Canagarajah, N.: Wavelets for image fusion. In: Petrosian, A.A., Meyer, F.G. (eds.) Wavelets in Signal and Image Analysis. Computational Imaging and Vision, vol. 19, pp. 213–241. Springer, Dordrecht (2001).  https://doi.org/10.1007/978-94-015-9715-9_8CrossRefGoogle Scholar
  23. 23.
    Liu, K., Guo, L., Chen, J.: Contourlet transform for image fusion using cycle spinning. BIAI J. Syst. Eng. Electron. 22(2), 353–357 (2011)CrossRefGoogle Scholar
  24. 24.
    Xiao-Bo, Q., Jing-Wen, Y., Hong-Zhi, X., Zi-Qian, Z.: Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatica Sinica 34(12), 1508–1514 (2008)CrossRefGoogle Scholar
  25. 25.
    Pohl, C., Van Genderen, J.L.: Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19(15), 823–854 (1998)CrossRefGoogle Scholar
  26. 26.
    Xydeas, C.S., Petrovic, V.: Objective image fusion performance measure. IEEE Electron. Lett. 36(4), 308–309 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stamatios Amanatiadis
    • 1
    Email author
  • Georgios Apostolidis
    • 1
  • Georgios Karagiannis
    • 1
  1. 1.Ormylia FoundationOrmylia, ChalkidikiGreece

Personalised recommendations