Performance Comparison of a Typical Nonlinear Load Connected to Ac and Dc Power Grids

  • Tiago J. C. SousaEmail author
  • Vítor Monteiro
  • J. G. Pinto
  • João L. Afonso
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 269)


This paper presents a performance comparison of a typical nonlinear load used in domestic appliances (electronic load), when supplied by an ac and a dc voltage of the same rms value. The performance of the nonlinear load towards its connection to ac and dc power grids is accomplished in terms of the waveforms which are registered in the consumed current, internal dc-link voltage and output voltage. A simulation model was developed using realistic database models of the power semiconductors comprising a nonlinear load with input ac-dc converter, so that the efficiency can be calculated and compared for three distinct cases: (1) load supplied by an ac voltage; (2) load supplied by a dc voltage; (3) load without the input ac-dc converter supplied by a dc voltage. Thus, besides the comparison between the ac and dc power grids supplying the same nonlinear load (cases 1 and 2), a third case is considered, which consists of removing the input ac-dc converter (eliminating needless components of the nonlinear load when supplied by a dc voltage). The obtained results show that supplying nonlinear loads with dc power grids is advantageous in relation to the ac power grid, and therefore it can be beneficial to adapt nonlinear loads to be powered by dc power grids.


Dc grids Dc smart homes Nonlinear loads Efficiency 



This work has been supported by COMPETE: POCI-01-0145–FEDER–007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015 – POCI – 01–0145–FEDER–016434. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency.


  1. 1.
    Foerst, R., Heyner, G., Kanngiesser, K.W., Waldmann, H.: Multiterminal operation of HVDC converter stations. IEEE Trans. Power Appar. Syst. PAS-88(7), 1042–1052 (1969)CrossRefGoogle Scholar
  2. 2.
    Dewey, C., Ellert, F., Lee, T., Titus, C.: Development of experimental 20-kY, 36-MW solid-state converters for HVDC systems. IEEE Trans. Power Appar.Syst. PAS-87(4), 1058–1066 (1968)CrossRefGoogle Scholar
  3. 3.
    Hirsch, F., Schafer, E.: Progress report on the HVDC test line of the 400 kV-Forschungsgemeinschaft: corona losses and radio interference. IEEE Trans. Power Appar.Syst. PAS-88(7), 1061–1069 (1969)CrossRefGoogle Scholar
  4. 4.
    Hingorani, N.: Transient overvoltage on a bipolar HVDC overhead line caused by DC line faults. IEEE Trans. Power Appar.Syst. PAS-89(4), 592–610 (1970)CrossRefGoogle Scholar
  5. 5.
    Reeve, J., Baron, J., Krishnayya, P.: A general approach to harmonic current generation by HVDC converters. IEEE Trans. Power Appar.Syst. PAS-88(7), 989–995 (1969)CrossRefGoogle Scholar
  6. 6.
    Hess, J.S., Rice, L.R.: Three megawatt HVDC transmission simulator. IEEE Trans. Ind. Gen. Appl. IGA-3(6), 531–537 (1967)CrossRefGoogle Scholar
  7. 7.
    Ekstrom, A., Liss, G.: A refined HVDC control system. IEEE Trans. Power Appar.Syst. PAS-89(5), 723–732 (1970)CrossRefGoogle Scholar
  8. 8.
    Horigome, T., Kurokawa, K., Kishi, K., Ozu, K.: A 100-kV thyristor converter for high-voltage dc transmission. IEEE Trans. Electron Devices 17(9), 809–815 (1970)CrossRefGoogle Scholar
  9. 9.
    Heising, C., Ringlee, R.: Prediction of reliability and availability of HVDC valve and HVDC terminal. IEEE Trans. Power Appar.Syst. PAS-89(4), 619–624 (1970)CrossRefGoogle Scholar
  10. 10.
    Hingorani, N.G.: High-voltage DC transmission: a power electronics workhorse. IEEE Spectr. 33(4), 63–72 (1996)CrossRefGoogle Scholar
  11. 11.
    Hammons, T.J., et al.: Role of HVDC transmission in future energy development. IEEE Power Eng. Rev. 20(2), 10–25 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Belda, N.A., Plet, C.A., Smeets, R.P.P.: Analysis of faults in multiterminal HVDC grid for definition of test requirements of HVDC circuit breakers. IEEE Trans. Power Deliv. 33(1), 403–411 (2018)CrossRefGoogle Scholar
  13. 13.
    Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. 24(3), 592–602 (2009)CrossRefGoogle Scholar
  14. 14.
    Franck, C.M.: HVDC circuit breakers: a review identifying future research needs. IEEE Trans. Power Deliv. 26(2), 998–1007 (2011)CrossRefGoogle Scholar
  15. 15.
    Guo, C., Zhang, Y., Gole, A.M., Zhao, C.: Analysis of dual-infeed HVDC With LCC–HVDC and VSC–HVDC. IEEE Trans. Power Deliv. 27(3), 1529–1537 (2012)CrossRefGoogle Scholar
  16. 16.
    Liu, G., Xu, F., Xu, Z., Zhang, Z., Tang, G.: Assembly HVDC breaker for HVDC grids with modular multilevel converters. IEEE Trans. Power Electron. 32(2), 931–941 (2017)CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Chen, Z.: A flexible power control method of VSC-HVDC link for the enhancement of effective short-circuit ratio in a hybrid multi-infeed HVDC system. IEEE Trans. Power Syst. 28(2), 1568–1581 (2013)CrossRefGoogle Scholar
  18. 18.
    Baek, S.-M., Kim, H.-J., Cho, J.-W., Ryoo, H.-S.: Cryogenic electrical insulation characteristics of solid insulator for the HVDC HTS cable. IEEE Trans. Appl. Supercond. 28(4), 1–4 (2018)Google Scholar
  19. 19.
    Nam, T., Shim, J.W., Hur, K.: Design and operation of double SMES coils for variable power system through VSC-HVDC connections. IEEE Trans. Appl. Supercond. 23(3), 5701004 (2013)CrossRefGoogle Scholar
  20. 20.
    Kim, J.G., et al.: Loss characteristic analysis of HTS DC power cable using LCC based DC transmission system. IEEE Trans. Appl. Supercond. 22(3), 3–6 (2012)CrossRefGoogle Scholar
  21. 21.
    Malek, B., Johnson, B.K.: Branch current control on a superconducting DC grid. IEEE Trans. Appl. Supercond. 23(3), 5401005 (2013)CrossRefGoogle Scholar
  22. 22.
    Yang, Q., Le Blond, S., Liang, F., Yuan, W., Zhang, M., Li, J.: Design and application of superconducting fault current limiter in a multiterminal HVDC system. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)CrossRefGoogle Scholar
  23. 23.
    Xiang, B., Liu, Z., Geng, Y., Yanabu, S.: DC circuit breaker using superconductor for current limiting. IEEE Trans. Appl. Supercond. 25(2), 1–7 (2015)CrossRefGoogle Scholar
  24. 24.
    Marian, A., Holé, S., Lesur, F., Tropeano, M., Bruzek, C.E.: Validation of the superconducting and insulating components of a high-power HVDC cable. IEEE Electr. Insul. Mag. 34(1), 26–36 (2018)CrossRefGoogle Scholar
  25. 25.
    IEEE Standards Association: IEEE recommended practice and requirements for harmonic control in electric power systems. In: IEEE Std 519-2014 (Revision of IEEE Std 519-1992), vol. 2014, pp. 1–29 (2014)Google Scholar
  26. 26.
    Enslin, J.H.R., Heskes, P.J.M.: Harmonic interaction between a large number of distributed power inverters and the distribution network. IEEE Trans. Power Electron. 19(6), 1586–1593 (2004)CrossRefGoogle Scholar
  27. 27.
    Goncalves, W.K.A., De Oliveira, J.C., Franco, V.L.S.: Harmonics produced by advanced static VAr compensator under electric power supply conditions with loss of quality. In: Proceedings of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 660–665 (2000)Google Scholar
  28. 28.
    Blanco, A.M., Stiegler, R., Meyer, J.: Power quality disturbances caused by modern lighting equipment (CFL and LED). In: 2013 IEEE Grenoble Conference, pp. 1–6 (2013)Google Scholar
  29. 29.
    Dugan, R.C., McGranaghan, M.F., Beaty, H.W., Santoso, S.: Electrical Power Systems Quality, 3rd edn. McGraw-Hill, New York (2004)Google Scholar
  30. 30.
    Grady, W.M., Samotyj, M.J., Noyola, A.H.: Survey of active power line conditioning methodologies. IEEE Trans. Power Deliv. 5(3), 1536–1542 (1990)CrossRefGoogle Scholar
  31. 31.
    Taylor, G.A.: Power quality hardware solutions for distribution systems: custom power. In: IEEE North Eastern Centre Power Section Symposium on the Reliability, Security and Power Quality of Distribution Systems, vol. 1995, pp. 1–9 (1995)Google Scholar
  32. 32.
    Singh, B., Al-Haddad, K., Chandra, A.: A review of active filters for power quality improvement. IEEE Trans. Ind. Electron. 46(5), 960–971 (1999)CrossRefGoogle Scholar
  33. 33.
    Morcos, M.M., Gomez, J.C.: Electric power quality - the strong connection with power electronics. IEEE Power Energy Mag. 1(5), 18–25 (2003)CrossRefGoogle Scholar
  34. 34.
    Khadkikar, V.: Enhancing electric power quality using UPQC: a comprehensive overview. IEEE Trans. Power Electron. 27(5), 2284–2297 (2012)CrossRefGoogle Scholar
  35. 35.
    Dragicevic, T., Vasquez, J.C., Guerrero, J.M., Skrlec, D.: Advanced LVDC electrical power architectures and microgrids: a step toward a new generation of power distribution networks. IEEE Electr. Mag. 2(1), 54–65 (2014)CrossRefGoogle Scholar
  36. 36.
    Kwasinski, A.: Quantitative evaluation of DC microgrids availability: effects of system architecture and converter topology design choices. IEEE Trans. Power Electron. 26(3), 835–851 (2011)CrossRefGoogle Scholar
  37. 37.
    Lu, S., Wang, L., Lo, T.-M., Prokhorov, A.V.: Integration of wind power and wave power generation systems using a DC microgrid. IEEE Trans. Ind. Appl. 51(4), 2753–2761 (2015)CrossRefGoogle Scholar
  38. 38.
    Patterson, B.T.: DC, come home: DC microgrids and the birth of the ‘Enernet’. IEEE Power Energy Mag. 10(6), 60–69 (2012)CrossRefGoogle Scholar
  39. 39.
    Rodriguez-Diaz, E., Vasquez, J.C., Guerrero, J.M.: Intelligent DC homes in future sustainable energy systems: when efficiency and intelligence work together. IEEE Consum. Electron. Mag. 5(1), 74–80 (2016)CrossRefGoogle Scholar
  40. 40.
    Ghazanfari, A., Mohamed, Y.A.-R.I.: Decentralized cooperative control for smart DC home with DC fault handling Capability. IEEE Trans. Smart Grid 9(5), 1 (2017)Google Scholar
  41. 41.
    Fairley, P.: DC versus AC: the second war of currents has already begun [In My View]. IEEE Power and Energy Mag. 10(6), 103–104 (2012)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Tiago J. C. Sousa
    • 1
    Email author
  • Vítor Monteiro
    • 1
  • J. G. Pinto
    • 1
  • João L. Afonso
    • 1
  1. 1.Centro ALGORITMIUniversity of MinhoGuimarãesPortugal

Personalised recommendations