Advertisement

Optimizing the Train-Catenary Electrical Interface Through Control Reconfiguration

  • António MartinsEmail author
  • Vítor Morais
  • Carlos Ramos
  • Adriano Carvalho
  • João L. Afonso
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 269)

Abstract

Electric railway vehicles are supplied by substations and catenaries at increasingly high power levels being the interface between the traction motors and the overhead contact line based on power electronics converters. A large part of these are AC-DC four quadrant converters operating in parallel at relatively small switching frequencies but using the interleaving principle to reach a low harmonic distortion of the catenary current and imposing specific harmonic ranges in this current. However, the current is not a pure sinusoidal wave and its harmonics can excite unwanted resonances due to the combined effect of the catenary distributed parameters, the substation equivalent impedance and the current spectrum that can vary according to normal and abnormal operating conditions. This paper analyses this phenomenon and proposes a control strategy capable of minimizing the resonance effects.

Keywords

AC-DC converters Electric railways Interleaved converters Resonance Railway systems 

Notes

Acknowledgments

The research has received funding from the FCT (Fundação para a Ciência e Tecnologia) under grant PD/BD/128051/2016. This work was partially supported by: FCT R&D Unit SYSTEC - POCI-01-0145-FEDER-006933/SYSTEC funded by FEDER funds through COMPETE 2020 and by national funds through the FCT/MEC, and co-funded by FEDER, in the scope of the PT2020 Partnership Agreement.

References

  1. 1.
    Brenna, M., Foiadelli, F., Zaninelli, D.: Electrical Railway Transportation Systems, 1st edn. IEEE Press - Wiley, Hoboken (2018)Google Scholar
  2. 2.
    Holtz, J., Klein, H.-J.: The propagation of harmonic currents generated by inverter-fed locomotives in the distributed overhead supply system. IEEE Trans. Power Electron. 4(2), 168–174 (1989)CrossRefGoogle Scholar
  3. 3.
    Chang, G.W., Lin, H.-W., Chen, S.-K.: Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters. IEEE Trans. Power Deliv. 19(2), 766–773 (2004)CrossRefGoogle Scholar
  4. 4.
    Zynovchenko, A., Xie, J., Jank, S., Klier, F.: Resonance phenomena and propagation of frequency converter harmonics in the catenary of railways with single-phase AC. In: Proceedings of the EPE 2005, 11–14 September, Dresden (2005)Google Scholar
  5. 5.
    Wang, B., Han, X., Gao, S., Huang, W., Jiang, X.: Harmonic power flow calculation for high-speed railway traction power supply system. In: Jia, L., Liu, Z., Qin, Y., Zhao, M., Diao, L. (eds.) EITRT 2013. LNEE, vol. 287, pp. 11–25. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-53778-3_2CrossRefGoogle Scholar
  6. 6.
    Hu, H., He, Z., Gao, S.: Passive filter design for China high-speed railway with considering harmonic resonance and characteristic harmonics. IEEE Trans. Power Deliv. 30(1), 505–514 (2015)CrossRefGoogle Scholar
  7. 7.
    Janssen, M.F.P., Gonçalves, P.G., Santo, R.P., Smulders, H.W.M.: Simulations and measurements on electrical resonances on the Portuguese 25 kV network. In: Proceedings of the 8th World Congress on Railway Research, WCRR 2008, 18–22 May, Seoul, Korea (2008)Google Scholar
  8. 8.
    Suarez, J.: Étude et modélisation des intéractions éléctriques entre les engins et les installations fixes de traction éléctrique 25 kV–50 Hz. Ph.D. thesis, GEET-INP, Toulouse, France (2014)Google Scholar
  9. 9.
    Hu, H., Tao, H., Blaabjerg, F., Wang, X., He, Z., Gao, S.: Train-network interactions and stability evaluation in high-speed railways - part I: phenomena and modeling. IEEE Trans. Power Electron. 33(6), 4627–4642 (2018)CrossRefGoogle Scholar
  10. 10.
    Lee, H., Lee, C., Jang, G., Kwon, S.-H.: Harmonic analysis of the Korean high-speed railway using the eight-port representation model. IEEE Trans. Power Deliv. 21(2), 979–986 (2006)CrossRefGoogle Scholar
  11. 11.
    Brenna, M., Capasso, A., Falvo, M.C., Foiadelli, F., Lamedica, R., Zaninelli, D.: Investigation of resonance phenomena in high speed railway supply systems: theoretical and experimental analysis. Electric Power Syst. Res. 81, 1915–1923 (2011)CrossRefGoogle Scholar
  12. 12.
    Holtz, J., Krah, J.O.: On-line identification of the resonance conditions in the overhead supply line of electric railways. Electr. Eng. 74(1), 99–106 (1990)Google Scholar
  13. 13.
    Mariscotti, A., Pozzobon, P.: Synthesis of line impedance expressions for railway traction systems. IEEE Trans. Veh. Technol. 52(2), 420–430 (2003)CrossRefGoogle Scholar
  14. 14.
    Dolara, A., Gualdoni, M., Leva, S.: Impact of high-voltage primary supply lines in the 2 \(\times \) 25 kV–50 Hz railway system on the equivalent impedance at pantograph terminals. IEEE Trans. Power Deliv. 27(1), 164–175 (2012)Google Scholar
  15. 15.
    Monjo, L., Sainz, L.: Study of resonances in 1 \(\times \) 25 kV AC traction systems. Electr. Power Compon. Syst. 43(15), 1771–1780 (2015)Google Scholar
  16. 16.
    Robert, A., Deflandre, T.: Guide for assessing the network harmonic impedance. In: Proceedings of the 14th International Conference and Exhibition on Electricity and Distribution, CIRED 1997, 2–5 June (IEEE Conference Publication No. 438) (1997)Google Scholar
  17. 17.
    Girgis, A., McManis, R.B.: Frequency domain techniques for modelling distribution or transmission networks using capacitor switching induced transients. IEEE Trans. Power Deliv. 4(3), 1882–1890 (1989)CrossRefGoogle Scholar
  18. 18.
    Hoffmann, N., Fuchs, F.W.: Minimal invasive equivalent grid impedance estimation in inductive-resistive power networks using extended Kalman filter. IEEE Trans. Power Electron. 29(2), 164–175 (2014)CrossRefGoogle Scholar
  19. 19.
    Duda, K., Borkowski, D., Bień, A.: Computation of the network harmonic impedance with chirp z-transform. Metrol. Measur. Syst. 16(2), 299–312 (2009)Google Scholar
  20. 20.
    Xu, W., Huang, Z., Cui, Y., Wang, H.: Harmonic resonance mode analysis. IEEE Trans. Power Deliv. 20(2), 1182–1190 (2005)CrossRefGoogle Scholar
  21. 21.
    Perreault, D.J., Kassakian, J.G.: Distributed interleaving of paralleled power converters. IEEE Trans. Circ. Syst.-I: Fundam. Theor. Appl. 44(8), 728–735 (1997)zbMATHCrossRefGoogle Scholar
  22. 22.
    Tan, P.-C., Loh, P.C., Holmes, D.G.: Optimal impedance termination of 25-kV electrified railway systems for improved power quality. IEEE Trans. Power Deliv. 20(2), 1703–1710 (2005)CrossRefGoogle Scholar
  23. 23.
    Zhang, R., Lin, F., Yang, Z., Cao, H., Liu, Y.: A harmonic resonance suppression strategy for a high-speed railway traction power supply system with a SHE-PWM four-quadrant converter based on active-set secondary optimization. Energies 10, 1567–1589 (2017)CrossRefGoogle Scholar
  24. 24.
    Holtz, J., Krah, J.O.: Suppression of time-varying resonances in the power supply line of AC locomotives by inverter control. IEEE Trans. Ind. Electron. 39(3), 223–229 (1992)CrossRefGoogle Scholar
  25. 25.
    Qiujiang, L., Mingli, W., Junki, Z., Kejian, S., Liran, W.: Resonant frequency identification based on harmonic injection measuring method for traction power supply systems. IET Power Electron. 11(3), 585–592 (2018)CrossRefGoogle Scholar
  26. 26.
    Sun, J.: Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 26(11), 3075–3078 (2011)CrossRefGoogle Scholar
  27. 27.
    Cespedes, M., Sun, J.: Adaptive control of grid-connected inverters based on online grid impedance measurements. IEEE Trans. Sustain. Energy 5(2), 516–523 (2014)CrossRefGoogle Scholar
  28. 28.
    Youssef, A.B., El Khil, S.K., Slama-Belkhodja, I.: State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction. IEEE Trans. Power Electron. 28(12), 5842–5853 (2013)CrossRefGoogle Scholar
  29. 29.
    Bahrani, B., Rufer, A.: Optimization-based voltage support in traction networks using active line-side converters. IEEE Trans. Power Electron. 28(2), 673–685 (2013)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • António Martins
    • 1
    Email author
  • Vítor Morais
    • 1
  • Carlos Ramos
    • 1
  • Adriano Carvalho
    • 1
  • João L. Afonso
    • 2
  1. 1.Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.Centro ALGORITMIUniversity of MinhoGuimarãesPortugal

Personalised recommendations