Power Electronics Converters for an Electric Vehicle Fast Charging Station with Storage Capability

  • J. G. PintoEmail author
  • Vítor Monteiro
  • Bruno Exposto
  • Luis A. M. Barros
  • Tiago J. C. Sousa
  • Luis F. C. Monteiro
  • João L. Afonso
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 269)


Fast charging stations are a key element for the wide spreading of Electric Vehicles (EVs) by reducing the charging time to a range between 20 to 40 min. However, the integration of fast charging stations causes some adverse impacts on the Power Grid (PG), namely by the huge increase in the peak demand during short periods of time. This paper addresses the design of the power electronics converters for an EV DC fast charging station with local storage capability and easy interface of renewables. In the proposed topology, the energy storage capability is used to smooth the peak power demand, inherent to fast charging systems, and contributes to the stability of the PG. When integrated in a Smart Grid, the proposed topology may even return some of the stored energy back to the power grid, when necessary. The accomplishment of the aforementioned objectives requires a set of different power electronics converters that are described and discussed in this paper.


Power electronics Electric Vehicles DC fast charging Energy Storage System 



This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and by FCT within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – COMPETE 2020 Programme, and FCT within project SAICTPAC/0004/2015‐POCI‐01‐0145–FEDER‐016434 and FCT within project PTDC/EEI-EEE/28813/2017. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018 granted by the Portuguese FCT agency. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency.


  1. 1.
    Rajashekara, K.: Present status and future trends in electric vehicle propulsion technologies. IEEE J. Emerg. Sel. Top. Power Electron. 1(1), 3–10 (2013)CrossRefGoogle Scholar
  2. 2.
    Emadi, A., Lee, Y.J., Rajashekara, K.: Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron. 55, 2237–2245 (2008)CrossRefGoogle Scholar
  3. 3.
    Gjelaj, M., Træholt, C., Hashemi Toghroljerdi, S., Andersen, P.B.: Optimal design of DC fast-charging stations for EVs in low voltage grids. In: Proceedings of 2017 IEEE Transportation Electrification Conference (2017).
  4. 4.
    Raghavan, S.S., Khaligh, A.: Electrification potential factor: energy-based value proposition analysis of plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 61(3), 1052–1059 (2012)CrossRefGoogle Scholar
  5. 5.
    Shao, S., Pipattanasomporn, M., Rahman, S.: Grid integration of electric vehicles and demand response with customer choice. IEEE Trans. Smart Grid 3(1), 543–550 (2012)CrossRefGoogle Scholar
  6. 6.
    Lopes, J.A.P., Soares, F., Almeida, P.M.R.: Integration of electric vehicles in the electric power systems. Proc. IEEE 99(1), 168–183 (2011)CrossRefGoogle Scholar
  7. 7.
    Güngör, V.C., et al.: Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inform. 7(4), 529–539 (2011)CrossRefGoogle Scholar
  8. 8.
    Monteiro, V., Pinto, J.G., Afonso, J.L.: Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes. IEEE Trans. Veh. Technol. 65(3), 1007–1020 (2016). ISSN: 0018-9545CrossRefGoogle Scholar
  9. 9.
    Pinto, J.G., Monteiro, V., Gonçalves, H., Afonso, J.L.: Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode. IEEE Trans. Veh. Technol. 63(3), 1104–1116 (2014). ISSN 0018-9545CrossRefGoogle Scholar
  10. 10.
    Bai, S., Lukic, S.M.: Unified active filter and energy storage system for an MW electric vehicle charging station. IEEE Trans. Power Electron. 28(12), 5793–5803 (2013)CrossRefGoogle Scholar
  11. 11.
    Efacec QC 50 Quick Charger: Efacec - Portfolio of Products (2008)Google Scholar
  12. 12.
    Monteiro, V., Sepúlveda, M.J., Aparício Fernandes, J.C., Pinto, J.G., Afonso, J.L.: Evaluation of the introduction of electric vehicles in the power grid—a study for the Island of Maio in Cape Verde. In: Garrido, P., Soares, F., Moreira, A.P. (eds.) CONTROLO 2016. LNEE, vol. 402, pp. 713–724. Springer, Cham (2017). Scholar
  13. 13.
    Vasiladiotis, M., Rufer, A., Béguin, A.: Modular converter architecture for medium voltage ultra fast EV charging stations: global system considerations. In: 2012 IEEE International Electric Vehicle Conference, Greenville, SC, pp. 1–7 (2012).
  14. 14.
    Gjelaj, M., Træholt, C., Hashemi, S., Andersen, P.B.: DC fast-charging stations for EVs controlled by a local battery storage in low voltage grids. In: 2017 IEEE Manchester PowerTech, Manchester, pp. 1–6 (2017).
  15. 15.
    Shariff, S., Alam, M.S., Ahmad, F., Khan, W.: Optimal electric vehicle fast charging infrastructure. In: Proceedings of the Intelligent Transportation Society of America 2018 Annual Meeting, Detroit, Michigan, 4–7 June 2018Google Scholar
  16. 16.
    Monteiro, V., Pinto, J.G., Afonso, J.L.: Experimental validation of a three-port integrated topology to interface electric vehicles and renewables with the electrical grid. IEEE Trans. Ind. Inform. 14(6), 2364–2374 (2018). Scholar
  17. 17.
    Youssef, C., Fatima, E., Najia, E., Chakib, A.: A technological review on electric vehicle DC charging stations using photovoltaic sources. In: IOP Conference Series: Materials Science and Engineering, vol. 353 (2018). Scholar
  18. 18.
    ABB: ABB and partners to evaluate the reuse of the Nissan LEAF battery for commercial purposes, Zurich, Switzerland, January 2012Google Scholar
  19. 19.
    Pinto, J.G., Monteiro, V., Pedrosa, D., Afonso, J.L.: Economic assessment of a public DC charging station for electric vehicles with load shift capability. In: Proceedings of the 3rd International Conference on Energy and Environment: Bringing Together Economics and Engineering – ICEE 2017, Porto, Portugal, 29–30 June 2017, pp. 460–466 (2017). ISBN:978-972-95396-9-5, ISSN:2183-3982Google Scholar
  20. 20.
    Rolim, L.G.B., Costa, D.R., Aredes, M.: Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory. IEEE Trans. Ind. Electron. 53(6), 1919–1926 (2006)CrossRefGoogle Scholar
  21. 21.
    Orts-Grau, S., Gimeno-Sales, F.J., Abellan-Garcia, A., Segui-Chilet, S., Alfonso-Gil, J.C.: Improved shunt active power compensator for IEEE Standard 1459 compliance. IEEE Trans. Power Deliv. 25(4), 2692–2701 (2010)CrossRefGoogle Scholar
  22. 22.
    Munoz, A.R., Lipo, T.A.: On-line dead-time compensation technique for open-loop PWM-VSI drives. IEEE Trans. Power Electron. 14(4), 683–689 (1999)CrossRefGoogle Scholar
  23. 23.
    Qiang, J., Yang, L., Ao, G., Zhong, H.: Battery management system for electric vehicle application. In: 2006 IEEE International Conference on Vehicular Electronics and Safety, Shanghai, pp. 134–138 (2006).
  24. 24.
    Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • J. G. Pinto
    • 1
    Email author
  • Vítor Monteiro
    • 1
  • Bruno Exposto
    • 1
  • Luis A. M. Barros
    • 1
  • Tiago J. C. Sousa
    • 1
  • Luis F. C. Monteiro
    • 2
  • João L. Afonso
    • 1
  1. 1.Centro ALGORITMI, University of MinhoGuimarãesPortugal
  2. 2.State University of Rio de Janeiro, Electronics Engineering ProgramRio de JaneiroBrazil

Personalised recommendations