Advertisement

Monoidal Encryption over \((\mathbb {F}_2,\cdot )\)

  • Mugurel Barcau
  • Vicenţiu PaşolEmail author
  • Cezar Pleşca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11359)

Abstract

In this paper we study monoid homomorphic encryption schemes over \((\mathbb {F}_2,\cdot )\). Such encryption schemes occur naturally by forgetting the addition operation in a Ring Homomorphic Encryption scheme over \(\mathbb {F}_2\) (if it exists). We study the structure of such schemes and analyze their security against quantum adversaries. We also present the only two monoid homomorphic encryption schemes over \((\mathbb {F}_2,\cdot )\) that exist in the literature and we raise the question of the existence of other such schemes. For one of the two schemes we present experimental results that show its performance and efficiency.

Keywords

Homomorphic encryption scheme Quantum security Monoid 

Notes

Acknowledgments

We are very grateful to Mihai Togan for his comments and suggestions. This research was partially supported by the Romanian National Authority for Scientific Research (CNCS-UEFISCDI) EUREKA 62 / 2017 under the project PN-III-P3-3.5-EUK-2016-0038.

References

  1. 1.
    Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: characterizations, impossibility results, and applications. Des. Codes Cryptogr. 67(2), 209–232 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barcau, M., Paşol, V.: Bounded homomorphic encryption from monoid algebras. https://eprint.iacr.org/2018/584.pdf
  3. 3.
    Barcau, M., Paşol, V.: Ring homomorphic encryption schemes. https://eprint.iacr.org/2018/583.pdf
  4. 4.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, pp. 97–106 (2011, unpublished). Longer version eprint.iacr.org/2011/344.pdf
  5. 5.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_50CrossRefGoogle Scholar
  6. 6.
    Childs, A.M., Ivanyos, G.: Quantum computation of discrete logarithms in semigroups. J. Math. Cryptol. 8(4), 405–416 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)Google Scholar
  8. 8.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_5CrossRefGoogle Scholar
  9. 9.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–299 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press (1978)Google Scholar
  11. 11.
    Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for \(NC^1\). In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, FOCS 1999, pp. 554–566 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mugurel Barcau
    • 1
    • 2
  • Vicenţiu Paşol
    • 1
    • 2
    Email author
  • Cezar Pleşca
    • 1
    • 3
  1. 1.certSIGN - Research and DevelopmentBucharestRomania
  2. 2.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  3. 3.Military Technical AcademyBucharestRomania

Personalised recommendations