Advertisement

Relating Different Polynomial-LWE Problems

  • Madalina BolboceanuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11359)

Abstract

In this paper we focus on Polynomial Learning with Errors (PLWE). This problem is parametrized by a polynomial and we are interested in relating the hardness of the \(\text {PLWE}^f\) and \(\text {PLWE}^h\) problems for different polynomials f and h. More precisely, our main result shows that for a fixed monic polynomial f, \(\text {PLWE}^{f\circ g}\) is at least as hard as than \(\text {PLWE}^f\), in both search and decision variants, for any monic polynomial g. As a consequence, \(\text {PLWE}^{\phi _n}\) is harder than \(\text {PLWE}^{f},\) for a minimal polynomial f of an algebraic integer from the cyclotomic field \(\mathbb {Q}(\zeta _n)\) with specific properties.

Keywords

Lattice-based cryptography LWE PLWE 

Notes

Acknowledgments

We thank Miruna Rosca and Radu Titiu for helpful discussions. Finally, we thank the anonymous reviewers for comments.

References

  1. [ABB10]
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefzbMATHGoogle Scholar
  2. [ADPS16]
    Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: USENIX, pp. 327–343 (2016)Google Scholar
  3. [BGV11]
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. Cryptology ePrint Archive, Report 2011/277 (2011)Google Scholar
  4. [BP14]
    Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_20CrossRefGoogle Scholar
  5. [BV11]
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_29CrossRefGoogle Scholar
  6. [CDPR16]
    Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_20CrossRefzbMATHGoogle Scholar
  7. [CDW17]
    Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_12CrossRefGoogle Scholar
  8. [CLS15]
    Chen, H., Lauter, K., Stange, K.E.: Attacks on search RLWE. SIAM J. Appl. Algebra Geom. (SIAGA) (2015, to appear)Google Scholar
  9. [EHL14]
    Eisenträger, K., Hallgren, S., Lauter, K.: Weak instances of PLWE. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13051-4_11CrossRefGoogle Scholar
  10. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of STOC, pp. 169–178. ACM (2009)Google Scholar
  11. [GHPS12]
    Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style homomorphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 19–37. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32928-9_2CrossRefGoogle Scholar
  12. [GSW13]
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. Cryptology ePrint Archive, Report 2013/340 (2013). https://eprint.iacr.org/2013/340
  13. [GVW15]
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. Cryptology ePrint Archive, Report 2015/029 (2015). https://eprint.iacr.org/2015/029
  14. [LPR10]
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. JACM 60(6), 43 (2010, 2013)MathSciNetCrossRefGoogle Scholar
  15. [LPR13]
    Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_3CrossRefGoogle Scholar
  16. [PRSD17]
    Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: STOC (2017)Google Scholar
  17. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of STOC, pp. 84–93 (2005)Google Scholar
  18. [RSSS17]
    Roşca, M., Sakzad, A., Stehlé, D., Steinfeld, R.: Middle-product learning with errors. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 283–297. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_10CrossRefGoogle Scholar
  19. [RSW18]
    Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 146–173. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_6CrossRefGoogle Scholar
  20. [SE94]
    Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)MathSciNetCrossRefGoogle Scholar
  21. [SSTX09]
    Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_36CrossRefGoogle Scholar
  22. [SSZ17]
    Steinfeld, R., Sakzad, A., Zhao, R.K.: Proposal for a NIST post-quantum public-key encryption and KEM standard (2017). http://users.monash.edu.au/~rste/Titanium_NISTSub.pdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BitdefenderBucharestRomania

Personalised recommendations