Advertisement

A Unified Security Perspective on Legally Fair Contract Signing Protocols

  • Diana MaimuţEmail author
  • George Teşeleanu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11359)

Abstract

Inspired by Maurer’s universal zero knowledge (UZK) abstract perspective and building on legally fair contract signing protocols without keystones, we propose and analyze the security of the first UZK class of co-signing protocols. We construct our main idea considering the stringent issue of scheme compatibility which characterizes communication systems. Typical examples are the cases of certificates in a public key infrastructure and the general issue of upgrading the version of a system. Thus, working in a general framework may reduce implementation errors and save application development and maintenance time.

Keywords

Security proofs Zero knowledge Co-signature protocol Digital signature Legal fairness Public key 

Supplementary material

References

  1. 1.
  2. 2.
    Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: Proceedings of the 4th ACM Conference on Computer and Communications Security - CCS 1997, pp. 7–17. ACM (1997)Google Scholar
  3. 3.
    Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_6CrossRefGoogle Scholar
  4. 4.
    Chen, L., Kudla, C., Paterson, K.G.: Concurrent signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_18CrossRefGoogle Scholar
  5. 5.
    Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptology 1(2), 77–94 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., Pointcheval, D.: Legally fair contract signing without keystones. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 175–190. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_10CrossRefGoogle Scholar
  7. 7.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  8. 8.
    Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_21CrossRefzbMATHGoogle Scholar
  9. 9.
    Goldwasser, S., Levin, L.: Fair computation of general functions in presence of immoral majority. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-38424-3_6CrossRefGoogle Scholar
  10. 10.
    Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. J. ACM 58(6), 1–37 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-45961-8_11CrossRefGoogle Scholar
  12. 12.
    Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02384-2_17CrossRefGoogle Scholar
  13. 13.
    Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing - PODC 2003, pp. 12–19. ACM (2003)Google Scholar
  14. 14.
    Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_6CrossRefGoogle Scholar
  15. 15.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_33CrossRefGoogle Scholar
  16. 16.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)CrossRefGoogle Scholar
  17. 17.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_22CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Advanced Technologies InstituteBucharestRomania
  2. 2.Department of Computer Science“Al.I.Cuza” University of IaşiIaşiRomania

Personalised recommendations