Advertisement

A Comparison of the Homomorphic Encryption Libraries HElib, SEAL and FV-NFLlib

  • Carlos Aguilar Melchor
  • Marc-Olivier Kilijian
  • Cédric LefebvreEmail author
  • Thomas Ricosset
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11359)

Abstract

Fully homomorphic encryption has considerably evolved during the past 10 years. In particular, the discovery of more efficient schemes has brought the computational complexity down to acceptable levels for some applications. Several implementations of these schemes have been publicly released, enabling researchers and practitioners to better understand the performance properties of the schemes. This improved understanding of the performance has led to the discovery of new potential applications of homomorphic encryption, fuelling further research on all fronts.

In this work, we provide a comparative benchmark of the leading homomorphic encryption libraries HElib, FV-NFLlib, and SEAL for large plaintext moduli of up to 2048 bits, and analyze their relative performance.

Keywords

Homomorphic encryption Benchmark SEAL FV-NFLlib HElib 

Supplementary material

References

  1. 1.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://eprint.iacr.org/2015/046
  2. 2.
    Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69453-5_23CrossRefGoogle Scholar
  3. 3.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_50CrossRefGoogle Scholar
  4. 4.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–325. ACM, January 2012Google Scholar
  5. 5.
    Chen, H., Han, K., Huang, Z., Jalali, A.: Simple encrypted arithmetic library - seal (v2.3). Technical report, Microsoft, December 2017. https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
  6. 6.
    Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1. Cryptology ePrint Archive, Report 2017/224 (2017). http://eprint.iacr.org/2017/224CrossRefGoogle Scholar
  7. 7.
    Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_20CrossRefGoogle Scholar
  8. 8.
    Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144
  9. 9.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009Google Scholar
  10. 10.
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_49CrossRefGoogle Scholar
  11. 11.
    Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_31CrossRefzbMATHGoogle Scholar
  12. 12.
    Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library. Technical report, MIT (2014)Google Scholar
  13. 13.
    Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_25CrossRefGoogle Scholar
  14. 14.
    Laine, K., Chen, H., Player, R.: Simple encrypted arithmetic library - seal (v2.1). Technical report, Microsoft, September 2016. https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-seal-v2-1/
  15. 15.
    Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06734-6_20CrossRefGoogle Scholar
  16. 16.
    Ricosset, T.: Helib-multiprecision (2017). https://github.com/tricosset/HElib-MP
  17. 17.
    Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_25CrossRefzbMATHGoogle Scholar
  18. 18.
    Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology ePrint Archive, Report 2011/133 (2011). http://eprint.iacr.org/2011/133

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlos Aguilar Melchor
    • 1
  • Marc-Olivier Kilijian
    • 2
  • Cédric Lefebvre
    • 3
    Email author
  • Thomas Ricosset
    • 4
  1. 1.ISAE SUPAERO, University of ToulouseToulouseFrance
  2. 2.CRM/UDeM and LATECE/UQAM, CNRSMontréalCanada
  3. 3.INP, ENSEEIHT, CNRS, IRITToulouseFrance
  4. 4.ThalesGennevilliersFrance

Personalised recommendations