Advertisement

Structural Health Monitoring of Wind Turbines Using a Digital Image Correlation System on a UAV

  • Ashim Khadka
  • Yaomin Dong
  • Javad BaqersadEmail author
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Unmanned aerial vehicles (UAVs) have recently emerged as a robust tool for remote inspection and data acquisition at places that are either inaccessible or riskier to perform measurements. To quantify the level of strain/stress and loading conditions that the rotating structures such as wind turbine experience during operation, an approach is proposed that can perform a nondestructive evaluation of these rotating structures using non-contact, three-dimensional (3D) digital image correlation (DIC). This technique addresses the benefit of non-interference with structure functionality and can be used for rotating or non-rotating structures. In this project, a synchronized set of a stereo camera system is used to acquire the images of a rotating turbine. These images are processed to obtain displacement, geometry, and strain over the wind turbine blades during deformation.

Keywords

Modal analysis DIC Wind turbine Drone Structural health monitoring 

References

  1. 1.
    Ciang, C.C., Lee, J.-R., Bang, H.-J.: Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas. Sci. Technol. 19, 122001 (2008)CrossRefGoogle Scholar
  2. 2.
    Larsen, F.M., Sorensen, T.: New lightning qualification test procedure for large wind turbine blades. In: Proceedings of International Conference on Lightning and Static Electricity, Blackpool, UK, 2003Google Scholar
  3. 3.
    Baqersad, J., Niezrecki, C., Avitabile, P.: Numerical and experimental analysis of the boundary conditions effects on the dynamics of wind turbines. Wind Eng. 39, 437–452 (2015)CrossRefGoogle Scholar
  4. 4.
    Baqersad, J., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic characterization of a free-free wind turbine blade assembly. In: Special Topics in Structural Dynamics, vol. 6, pp. 303–312. Springer (2013)Google Scholar
  5. 5.
    Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Comparison of modal parameters extracted using MIMO, SIMO, and impact hammer tests on a three-bladed wind Turbine. In: Topics in Modal Analysis II, vol. 8, pp. 185–197. Springer (2014)Google Scholar
  6. 6.
    Obando, S.E., Baqersad, J., Avitabile, P.: Improved modal characterization using hybrid data. Sound Vib. 48, 8–12 (2014)Google Scholar
  7. 7.
    Yang, S., Allen, M.S.: Output-only modal analysis using continuous-scan laser Doppler Vibrometry and application to a 20 kW wind turbine. Mech. Syst. Signal Process. 31, 228–245 (2012).  https://doi.org/10.1016/j.ymssp.2012.04.012 CrossRefGoogle Scholar
  8. 8.
    Ozbek, M., Rixen, D.J., Erne, O., Sanow, G.: Feasibility of monitoring large wind turbines using photogrammetry. Energy. 35, 4802–4811 (2010).  https://doi.org/10.1016/j.energy.2010.09.008 CrossRefGoogle Scholar
  9. 9.
    Ehrhardt, D.A., Allen, M.S., Yang, S., Beberniss, T.J.: Full-field linear and nonlinear measurements using continuous-scan laser Doppler Vibrometry and high speed three-dimensional digital image correlation. Mech. Syst. Signal Process. 86, 82–97.  https://doi.org/10.1016/j.ymssp.2015.12.003
  10. 10.
    Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics – a review. Mech. Syst. Signal Process. 86, 17–34.  https://doi.org/10.1016/j.ymssp.2016.02.011
  11. 11.
    Sarrafi, A., Poozesh, P., Mao, Z.: A comparison of computer-vision-based structural dynamics characterizations. In: Barthorpe, R., Platz, R., Lopez, I., Moaveni, B., Papadimitriou, C. (eds.) Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017, pp. 295–301. Springer International Publishing, Cham (2017).  https://doi.org/10.1007/978-3-319-54858-6_29 CrossRefGoogle Scholar
  12. 12.
    Niezrecki, C., Baqersad, J., Sabato, A.: Digital image correlation techniques for NDE and SHM. In: Handbook of Advanced Non-Destructive Evaluation, pp. 1–46 (2018).  https://doi.org/10.1007/978-3-319-30050-4_47-1 CrossRefGoogle Scholar
  13. 13.
    Baqersad, J., Carr, J., Lundstrom, T., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic characteristics of a wind turbine blade using 3D digital image correlation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp. 83482I-83482I-83489 (2012)Google Scholar
  14. 14.
    Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic stress–strain on turbine blades using digital image correlation techniques part 2: dynamic measurements. In: Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, vol. 2, pp. 221–226. Springer, New York, NY (2012) Google Scholar
  15. 15.
    Lundstrom, T., Baqersad, J., Niezrecki, C., Avitabile, P.: Using high-speed stereophotogrammetry techniques to extract shape information from wind turbine/rotor operating data. In: 30th IMAC, A Conference on Structural Dynamics, 2012, January 30, 2012–February 2, 2012, Springer New York, Jacksonville, 2012, pp. 269–275.  https://doi.org/10.1007/978-1-4614-2419-2_26
  16. 16.
    Poozesh, P., Sarrafi, A., Mao, Z., Avitabile, P., Niezrecki, C.: Feasibility of extracting operating shapes using phase-based motion magnification technique and stereo-photogrammetry. J. Sound Vib. 407, 350–366 (2017).  https://doi.org/10.1016/j.jsv.2017.06.003 CrossRefGoogle Scholar
  17. 17.
    Poozesh, P., Sarrafi, A., Mao, Z., Niezrecki, C.: Modal parameter estimation from optically-measured data using a hybrid output-only system identification method. Measurement. 110, 134–145 (2017)CrossRefGoogle Scholar
  18. 18.
    Sarrafi, A., Mao, Z.: Wind turbine blade damage detection via 3-dimensional phase-based motion estimation. In: Proceedings of the 11th International Workshop on Structural Heath Monitoring 2017, (2017).  https://doi.org/10.12783/shm2017/14154
  19. 19.
    Sarrafi, A., Poozesh, P., Niezrecki, C., Mao, Z.: Mode extraction on wind turbine blades via phase-based video motion estimation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp. 101710E-101710E-101712, 2017Google Scholar
  20. 20.
    Lundstrom, T., Baqersad, J., Niezrecki, C.: Monitoring the dynamics of a helicopter Main rotor with high-speed Stereophotogrammetry. Exp. Tech. (2015).  https://doi.org/10.1111/ext.12127
  21. 21.
    Schneider, O.: Analysis of SPR measurements from HART II. Aerosp. Sci. Technol. 9, 409–420 (2005).  https://doi.org/10.1016/j.ast.2005.01.013 CrossRefzbMATHGoogle Scholar
  22. 22.
    Patil, K., Baqersad, J., Sheidaei, A.: A multi-view digital image correlation for extracting mode shapes of a tire. In: Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, vol. 9, pp. 211–217. Springer, Cham (2017)CrossRefGoogle Scholar
  23. 23.
    Mange, A., Srivastava, V., More, J., Baqersad, J.: Using digital image correlation to measure dynamics of rolling tires. In: SAE World Congress, SAE Technical Paper, Detroit (2018).  https://doi.org/10.4271/2018-01-1217
  24. 24.
    Patil, K., Srivastava, V., Baqersad, J.: A Multi-view optical technique to obtain mode shapes of structures. Measurement. 122, 358–367 (2018).  https://doi.org/10.1016/j.measurement.2018.02.059 CrossRefGoogle Scholar
  25. 25.
    Srivastava, V., Patil, K., Baqersad, J., Zhang, J.: A multi-view DIC approach to extract operating mode shapes of structures. In: Structural Health Monitoring, Photogrammetry & DIC, vol. 6, pp. 43–48. Springer (2019)Google Scholar
  26. 26.
    Kim, S.-W., Kim, N.-S.: Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT & E Int. 59, 25–33 (2013).  https://doi.org/10.1016/j.ndteint.2013.05.002 CrossRefGoogle Scholar
  27. 27.
    Busca, G., Cigada, A., Mazzoleni, P., Zappa, E.: Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Exp. Mech. 54, 255–271 (2014).  https://doi.org/10.1007/s11340-013-9784-8 CrossRefGoogle Scholar
  28. 28.
    Baqersad, J., Niezrecki, C., Avitabile, P.: Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique. J. Sound Vib. 352, 16–29 (2015).  https://doi.org/10.1016/j.jsv.2015.04.026 CrossRefGoogle Scholar
  29. 29.
    Baqersad, J., Niezrecki, C., Avitabile, P.: Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry. Mech. Syst. Signal Process. 62, 284–295 (2015).  https://doi.org/10.1016/j.ymssp.2015.03.021 CrossRefGoogle Scholar
  30. 30.
    Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P.: Full-field dynamic strain on wind turbine blade using digital image correlation techniques and limited sets of measured data from photogrammetric targets. Exp. Tech. (2015).  https://doi.org/10.1111/ext.12129
  31. 31.
    Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: A noncontacting approach for full-field strain monitoring of rotating structures. J. Vib. Acoust. 138, 031008–031008 (2016).  https://doi.org/10.1115/1.4032721 CrossRefGoogle Scholar
  32. 32.
    Baqersad, J., Bharadwaj, K., Poozesh, P.: Modal expansion using strain mode shapes. In: Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, vol. 9, pp. 219–226. Springer (2017)Google Scholar
  33. 33.
    Bharadwaj, K., Baqersad, J.: Strain Expansion Using Mode Shapes Obtained with Digital Image Correlation, Composite Structures (2018, in press)Google Scholar
  34. 34.
    Chen, Y., Joffre, D., Avitabile, P.: Underwater dynamic response at limited points expanded to full-field strain response. J. Vib. Acoust. 140, 051016 (2018)CrossRefGoogle Scholar
  35. 35.
    Rahneshin, V., Chierichetti, M.: An integrated approach for non-periodic dynamic response prediction of complex structures: numerical and experimental analysis. J. Sound Vib. 378, 38–55 (2016).  https://doi.org/10.1016/j.jsv.2016.05.017 CrossRefGoogle Scholar
  36. 36.
    Reagan, D., Sabato, A., Niezrecki, C.: Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. Struct. Health Monit. 17(5), 1056–1072 (2018).  https://doi.org/10.1177/1475921717735326 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  1. 1.NVH & Experimental Mechanics Laboratory (NVHEM Lab)Kettering UniversityFlintUSA

Personalised recommendations