Advertisement

Interval-Valued Methods in Medical Decision Support Systems

  • Urszula BentkowskaEmail author
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 378)

Abstract

In this chapter we present the application of methods based on interval modeling and aggregation in OvaExpert computer support system [OvaExpert project homepage: http://ovaexpert.pl/en/] designed for ovarian tumor diagnosis (however applicable also in other medical fields). It was shown that such methods made it possible to reduce the negative impact of lack of data and lead to meaningful and accurate decisions [2, 3, 4, 5, 6, 7, 8, 9, 10]. Here the behavior of some new interval-valued operators in OvaExpert is shown, namely there are considered possible and necessary aggregation functions and aggregation functions with respect to admissible linear orders. These aggregation operators were not previously considered in OvaExpert. The results prove that these new aggregation operators may be competitive with others, especially if it comes to the cost matrix results.

References

  1. 1.
    OvaExpert project homepage: http://ovaexpert.pl/en/
  2. 2.
    Dyczkowski, K., Wójtowicz, A., Żywica, P., Stachowiak, A., Moszyński, R., Szubert, S.: An intelligent system for computer-aided ovarian tumor diagnosis. In: Intelligent Systems 2014, pp. 335–344. Springer International Publishing, Berlin (2015)Google Scholar
  3. 3.
    Dyczkowski, K.: Studies in Computational Intelligence. Intelligent medical decision support system based on imperfect information: the case of ovarian tumor diagnosis. Springer, Berlin (2018)Google Scholar
  4. 4.
    Moszyński, R., Żywica, P., Wójtowicz, A., Szubert, S., Sajdak, S., Stachowiak, A., Dyczkowski, K., Wygralak, M., Szpurek, D.: Menopausal status strongly influences the utility of predictive models in differential diagnosis of ovarian tumors: an external validation of selected diagnostic tools. Ginekol. Pol. 85(12), 892–899 (2014)CrossRefGoogle Scholar
  5. 5.
    Stachowiak, A., Dyczkowski, K., Wójtowicz, A., Żywica, P., Wygralak, M.: A bipolar view on medical diagnosis in ovaexpert system. In: Andreasen, T., Christiansen, H., Kacprzyk, J., et al. (eds.) Flexible Query Answering Systems 2015: Proceeding of the FQAS 2015, Cracow, Poland, October 26–28, 2015. Advances in Intelligent Systems and Computing, vol. 400, pp. 483–492. Springer International Publishing, Cham (2016)Google Scholar
  6. 6.
    Szubert, S., Wójtowicz, A., Moszyński, R., Żywica, P., Dyczkowski, K., Stachowiak, A., Sajdak, S., Szpurek, D., Alcázar, J.L.: External validation of the IOTA ADNEX model performed by two independent gynecologic centers. Gynecol. Oncol. 142(3), 490–495 (2016)CrossRefGoogle Scholar
  7. 7.
    Wójtowicz, A., Żywica, P., Szarzyński, K., Moszyński, R., Szubert, S., Dyczkowski, K., Stachowiak, A., Szpurek, D., Wygralak, M.: Dealing with uncertinity in ovarian tumor diagnosis. In: Modern Approaches in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Vol. II: Applications, pp. 151–158. SRI PAS, Warszawa (2014)Google Scholar
  8. 8.
    Wójtowicz, A., Żywica, P., Stachowiak, A., Dyczkowski, K.: Solving the problem of incomplete data in medical diagnosis via interval modeling. Appl. Soft Comput. 47, 424–437 (2016)CrossRefGoogle Scholar
  9. 9.
    Żywica, P., Wójtowicz, A., Stachowiak, A., Dyczkowski, K.: Improving medical decisions under incomplete data using intervalvalued fuzzy aggregation. In: Proceeding of the IFSA-EUSFLAT 2015, pp. 577–584. Atlantis Press, Asturias (2015)Google Scholar
  10. 10.
    Żywica, P., Dyczkowski, K., Wójtowicz, A., Stachowiak, A., Szubert, S., Moszyński, R.: Development of a fuzzy-driven system for ovarian tumor diagnosis. Biocybern. Biomed. Eng. 36(4), 632–643 (2016)CrossRefGoogle Scholar
  11. 11.
    Alcázar, J.L., Mercé, L.T., et al.: A new scoring system to differentiate benign from malignant adnexal masses. Obstet. Gynecol. Surv. 58(7), 462–463 (2003)CrossRefGoogle Scholar
  12. 12.
    Szpurek, D., Moszyński, R., et al.: An ultrasonographic morphological index forprediction of ovarian tumor malignancy. Eur. J. Gynaecol. Oncol. 26(1), 51–54 (2005)Google Scholar
  13. 13.
    Jacobs, I., Oram, D., et al.: A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis ofovarian cancer. BJOG 97(10), 922–929 (1990)CrossRefGoogle Scholar
  14. 14.
    Timmerman, D., Bourne, T.H., et al.: A comparison of methods for preoperative discrimination between malignant and benign adnexal masses: the development of a new logistic regression model. Am. J. Obstet. Gynecol. 181(1), 57–65 (1999)CrossRefGoogle Scholar
  15. 15.
    Timmerman, D., Testa, A.C., et al.: Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: amulticenter study by the international ovarian tumor analysis group. J. Clin. Oncol. 23(34), 8794–8801 (2005)CrossRefGoogle Scholar
  16. 16.
    Bentkowska, U., Król, A.: Preservation of fuzzy relation properties based on fuzzy conjunctions and disjunctions during aggregation process. Fuzzy Sets Syst. 291, 98–113 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bentkowska, U.: Aggregation of diverse types of fuzzy orders for decision making problems. Inf. Sci. 424, 317–336 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    De Miguel, L., Bustince, H., Pȩkala, B., Bentkowska, U., Da Silva, I., Bedregal, B., Mesiar, R., Ochoa, G.: Interval-valued Atanassov intuitionistic OWA aggregations using admissible linear orders and their application to decision making. IEEE Trans. Fuzzy Syst. 24(6), 1586–1597 (2016)CrossRefGoogle Scholar
  19. 19.
    Bentkowska, U., Pȩkala, B.: Diverse classes of interval-valued aggregation functions in medical diagnosis support. In: Medina, J. et al. (eds.) IPMU 2018, pp. 391–403. Springer International Publishing AG, part of Springer, CCIS 855 (2018)Google Scholar
  20. 20.
    Bentkowska, U.: New types of aggregation functions for interval-valued fuzzy setting and preservation of pos-B and nec-B-transitivity in decision making problems. Inf. Sci. 424, 385–399 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zapata, H., Bustince, H., Montes, S., Bedregal, B., Dimuro, G.P., Takáč, Z., Baczyński, M., Fernandez, J.: Interval-valued implications and interval-valued strong equality index with admissible orders. Int. J. Approx. Reason. 88, 91–109 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)CrossRefGoogle Scholar
  23. 23.
    Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst. 220, 69–77 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
  26. 26.
    Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland

Personalised recommendations