Advertisement

Aggregation in Interval-Valued Settings

  • Urszula BentkowskaEmail author
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 378)

Abstract

Aggregation functions for interval-valued fuzzy settings derive from the concept of an aggregation function defined on the unit interval [0, 1]. This is why we begin with recalling the most important properties of aggregation functions as well as a short historical development of this concept. Next, classes, properties and construction methods of aggregation functions defined for interval-valued settings are provided. We pay special attention to the new classes of aggregation operators, namely possible and necessary aggregation functions. We present examples, properties, construction methods and dependencies between these two classes of operators and other well-known aggregation operators applied in interval-valued fuzzy settings. The presented results may be also useful for the entire community, not only fuzzy, involved in research under uncertainty or imperfect information.

References

  1. 1.
    Marichal, J.L.: On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom. Aequationes Math. 59, 74–83 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bullen, P.S., Mitrinović, D.S., Vasić, P.M.: Means and Their Inequalities. Reidel, Dordrecht (1988)CrossRefGoogle Scholar
  3. 3.
    Ostasiewicz, S., Ostasiewicz, W.: Means and their applications. Ann. Oper. Res. 97, 337–355 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cauchy, A.L.: Cours d’analyse de l’Ecole Royale Polytechnique. Analyse Algébraique. vol. 1, Debure, Paris (1821)Google Scholar
  5. 5.
    Chisini, O.: Sul concetto di media. Periodico di matematiche 9(4), 106–116 (1929)zbMATHGoogle Scholar
  6. 6.
    Finetti, B.: Sul concetto di media. Giorn. Ital. Attuari 2(3), 369–396 (1931)zbMATHGoogle Scholar
  7. 7.
    Ricci, U.: Confronti tra medie. Giorn. Economisti e Rivista di Statistica 26, 38–66 (1935)Google Scholar
  8. 8.
    Kolmogorov, A.N.: Sur la notion de la moyenne. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12(6), 388–391 (1930)Google Scholar
  9. 9.
    Nagumo, M.: Über eine klasse der mittelwerte. Jpn. J. Math. 7, 71–79 (1930)CrossRefGoogle Scholar
  10. 10.
    Kitagawa, T.: On some class of weighted means. Proc. Phys.-Math. Soc. Jpn. 16, 311–320 (1934)zbMATHGoogle Scholar
  11. 11.
    Aczél, J.: Lectures on Functional Equations and Their Applications. Academic, New York (1966)zbMATHGoogle Scholar
  12. 12.
    Aczél, J.: On mean values. Bull. Am. Math. Soc. 54, 392–400 (1948)CrossRefGoogle Scholar
  13. 13.
    Aczél, J., Alsina, C.: Synthesizing judgments: a functional equations approach. Math. Model. 9, 311–320 (1987)CrossRefGoogle Scholar
  14. 14.
    Aczél, J., Dhombres, J.: Functional Equations in Several Variables with Applications to Mathematics, Information Theory and to the Natural and Social Sciences. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  15. 15.
    Fodor, J., Marichal, J.: On nonstrict means. Aequationes Math. 54, 308–327 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hardy, G.H., Littlewood, J., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1955)zbMATHGoogle Scholar
  17. 17.
    Bajraktarevič, M.: Sur une équation fonctionelle aux valeurs moyennes. Glasnik Mat. - Fiz. Astr. 13, 243–248 (1958)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Páles, Z.: Characterization of quasideviation means. Acta Math. Acad. Sci. Hungar. 40(3–4), 243–260 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Beliakov, G., Špirková, J.: Weak monotonicity of Lehmer and Gini means. Fuzzy Sets Syst. 299, 26–40 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Studies in fuzziness and soft computing. Springer International Publishing, Switzerland (2016)CrossRefGoogle Scholar
  21. 21.
    Qi, F.: Generalized abstracted mean values. J. Ineq. Pure and Appl. Math. 1 (1), Art. 4 (2000) Available online at http://jipam.vu.edu.au/
  22. 22.
    Yager, R.R.: On ordered weighting averaging operators in multicriteria decision making. IEEE Trans. Syst. Man Cybernet. 18, 183–190 (1988)CrossRefGoogle Scholar
  23. 23.
    Fodor, J., Marichal, J., Roubens, M.: Characterization of the ordered weighted averaging operators. IEEE Trans. Fuzzy Syst. 3(2), 236–240 (1995)CrossRefGoogle Scholar
  24. 24.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)CrossRefGoogle Scholar
  25. 25.
    Calvo, T., Kolesárová, A., Komorniková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., et al. (eds.) Aggregation Operators, pp. 3–104. Physica-Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Pradera, A., Beliakov, G., Bustince, H., De Baets, B.: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inf. Sci. 329, 357–380 (2016)CrossRefGoogle Scholar
  27. 27.
    Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Calvo, T., De Baets, B., Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120, 385–394 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions. Nonlinear Anal.-Theor 72, 1488–1499 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Maes, K.C., Saminger, S., De Baets, B.: Representation and construction of self-dual aggregation operators. Eur. J. Oper. Res. 177, 472–487 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mesiar, R., Kolesárová, A., Bustince, H., Fernandez, J.: Dualities in the class of extended Boolean functions. Fuzzy Sets Syst. 332, 78–92 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Bustince, H., Fernandeza, J., Kolesarova, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244, 300–308 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince, H.: Pre-aggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016)CrossRefGoogle Scholar
  34. 34.
    Wilkin, T., Beliakov, G.: Weakly monotone aggregation functions. Int. J. Intell. Syst. 30, 144–169 (2015)CrossRefGoogle Scholar
  35. 35.
    Bustince, H., Barrenechea, E., Sesma-Sara, M., Lafuente, J., Dimuro, G. P., Mesiar, R., Kolesárová, A.: Ordered directionally monotone functions. Justification and application. IEEE Trans. Fuzzy Syst. (2017).  https://doi.org/10.1109/TFUZZ.2017.2769486CrossRefGoogle Scholar
  36. 36.
    Sesma-Sara, M.,Lafuente, J., Roldán, A., Mesiar, R., Bustince, H.: Strengthened ordered directionally monotone functions. Links between the different notions of monotonicity. Fuzzy Sets Syst. (2018).  https://doi.org/10.1016/j.fss.2018.07.007CrossRefGoogle Scholar
  37. 37.
    Tardiff, R.M.: Topologies for probabilistic metric spaces. Pac. J. Math. 65, 233–251 (1976)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)zbMATHGoogle Scholar
  39. 39.
    Saminger-Platz, S.: The dominance relation in some families of continuous Archimedean t-norms and copulas. Fuzzy Sets Syst. 160, 2017–2031 (2009)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Saminger, S., Mesiar, R., Bodenhofer, U.: Domination of aggregation operators and preservation of transitivity. Int. J. Uncertain. Fuzz. Knowledge-Based Syst. 10/s, 11–35 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Bentkowska, U., Drewniak, J., Drygaś, P., Król, A., Rak, E.: Dominance of binary operations on posets. In: Atanassov, K.T., et al. (eds.) Uncertainty and Imprecision in Decision Making and Decision Support: Cross-Fertilization, New Models and Applications. IWIFSGN 2016. Advances in Intelligent Systems and Computing, vol. 559, pp. 143–152. Springer, Cham (2018)Google Scholar
  42. 42.
    Saminger-Platz, S., Mesiar, R., Dubois, D.: Aggregation operators and commuting. IEEE Trans. Fuzzy Syst. 15(6), 1032–1045 (2007)CrossRefGoogle Scholar
  43. 43.
    Bentkowska, U., Król, A.: Preservation of fuzzy relation properties based on fuzzy conjunctions and disjunctions during aggregation process. Fuzzy Sets Syst. 291, 98–113 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Drewniak, J., Dudziak, U.: Preservation of properties of fuzzy relations during aggregation processes. Kybernetika 43, 115–132 (2007)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Dubois, D., Prade, H.: Weighted minimum and maximum operations in fuzzy set theory. Inf. Sci. 39, 205–210 (1986)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Marrara, S., Pasi, G., Viviani, M.: Aggregation operators in information retrieval. Fuzzy Sets Syst. 324, 3–19 (2017)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Asiain, M.J., Elkano, M., Bustince, H.: CC-integrals: choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowledge-Based Syst. 119, 32–43 (2017)CrossRefGoogle Scholar
  48. 48.
    Dimuro, G.P., Lucca, G., Sanz, J.A., Bustince, H., Bedregal, B.: CMin-Integral: a choquet-like aggregation function based on the minimum t-norm for applications to fuzzy rule-based classification systems. In: Torra, V., et al. (eds.) Aggregation Functions in Theory and in Practice. Advances in Intelligent Systems and Computing, vol. 581, pp. 83–95. Springer, Cham (2018)CrossRefGoogle Scholar
  49. 49.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin (2007)zbMATHGoogle Scholar
  50. 50.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  51. 51.
    Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Berlin (2007)zbMATHGoogle Scholar
  52. 52.
    Dyczkowski, K.: Intelligent medical decision support system based on imperfect information. The Case of Ovarian Tumor Diagnosis. Studies in Computational Intelligence. Springer, Cham (2018)Google Scholar
  53. 53.
    Bentkowska, U., Pȩkala, B.: Diverse classes of interval-valued aggregation functions in medical diagnosis support. In: Medina, J. et al. (eds.) IPMU 2018, pp. 391–403. Springer International Publishing AG, part of Springer, CCIS 855 (2018)Google Scholar
  54. 54.
    Komorníková, M., Mesiar, R.: Aggregation functions on bounded partially ordered sets and their classification. Fuzzy Sets Syst. 175, 48–56 (2011)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Deschrijver, G.: Arithmetic operators in interval-valued fuzzy set theory. Inf. Sci. 177, 2906–2924 (2007)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Drygaś, P., Pȩkala, B.: Properties of decomposable operations on some extension of the fuzzy set theory. In: Atanassov, K.T., Hryniewicz, O., Kacprzyk, J. et al., (eds.) Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets. Generalized Nets and Related Topics, pp. 105–118. EXIT, Warsaw (2008)Google Scholar
  57. 57.
    Deschrijver, G.: Quasi-arithmetic means and OWA functions in interval-valued and Atanassovs intuitionistic fuzzy set theory. In: Galichet, S. et al. (eds.) Proceedings of EUSFLAT-LFA 2011, 18-22.07.2011, Aix-les-Bains, pp. 506–513. France (2011)Google Scholar
  58. 58.
    Bentkowska, U., Pȩkala, B., Bustince, H., Fernandez, J., Jurio, A., Balicki, J.: N-reciprocity property for interval-valued fuzzy relations with an application to group decision making problems in social networks. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 25(Suppl. 1), 43–72 (2017)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Deschrijver, G., Cornelis, C., Kerre, E.: On the representation of intuitonistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12, 45–61 (2004)CrossRefGoogle Scholar
  60. 60.
    Deschrijver, G.: Generators of t-norms in interval-valued fuzzy set theory. In: Montseny, E. and Sobrevilla, P. (eds.) Proceedings of the Joint 4th Conference of the European Society for Fuzzy Logic and Technology and the 11th Rencontres Francophones sur la Logique Floue et ses Applications, Barcelona, Spain, September 7–9, 2005, pp. 253–258. Spain (2005)Google Scholar
  61. 61.
    Bentkowska, U.: New types of aggregation functions for interval-valued fuzzy setting and preservation of pos-B and nec-B-transitivity in decision making problems. Inf. Sci. 424, 385–399 (2018)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Zapata, H., Bustince, H., Montes, S., Bedregal, B., Dimuro, G.P., Takáč, Z., Baczyński, M., Fernandez, J.: Interval-valued implications and interval-valued strong equality index with admissible orders. Int. J. Approx. Reason. 88, 91–109 (2017)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R.: A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy sets applications. IEEE Trans. Fuzzy Syst. 21(6), 1150–1162 (2013)CrossRefGoogle Scholar
  64. 64.
    Bedregal, B., Bustince, H., Dimuro, G.P., Fernandez, J.: Generalized interval-valued OWA operators with interval weights derived from interval-valued overlap functions. Int. J. Approx. Reason. 90, 1–16 (2017)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Qiao, J., Hu, B.Q.: On interval additive generators of interval overlap functions and interval grouping functions. Fuzzy Sets Syst. 323, 19–55 (2017)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.: Overlap index, overlap functions and migrativity. In: Carvalho, J. P., Dubois, D., Kaymak, U. and Sousa, J. M. C. (eds.) Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, July 20–24, pp. 300–305. ISBN: \(978-989-95079-6-8\) (2009)Google Scholar
  67. 67.
    Bustince, H., Pagola, M., Mesiar, R., Hüllermeier, E., Herrera, F.: Grouping, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Syst. 20, 405–415 (2012)CrossRefGoogle Scholar
  68. 68.
    Dimuro, G.P., Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S.: Interval additive generators of interval t-norms and interval t-conorms. Inf. Sci. 181, 3898–3916 (2011)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Pȩkala, B.: Uncertainty data in interval-valued fuzzy set theory. Properties, Algorithms and Applications. Studies in Fuzziness and Soft Computing. Springer, Cham (2019)Google Scholar
  70. 70.
    Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford (1963)zbMATHGoogle Scholar
  71. 71.
    Elkano, M., Sanz, J.A., Galar, M., Pȩkala, B., Bentkowska, U., Bustince, H.: Composition of interval-valued fuzzy relations using aggregation functions. Inf. Sci. 369, 690–703 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland

Personalised recommendations