Advertisement

Foams

  • Tobias Standau
  • Volker AltstädtEmail author
Chapter

Abstract

This chapter deals with polypropylene foams and consist out of 3 parts. Firstly—for a better understanding—the basics of foaming are described. This includes the fundamental physical processes of diffusion, nucleation and cell growth. Furthermore, material properties which are relevant for foaming are explained and typical blowing agents (physical and chemical) are introduced. Secondly, the foaming processes for polypropylene are summarized, beginning with the so-called batch foaming which is mostly relevant for scientific research. More industrial relevant processes for foaming PP are foam extrusion, foam injection molding (FIM) and bead foaming. With FIM light-weight parts with good mechanical properties can be produced. This can be achieved with physical and chemical blowing agents and with different methods. Bead foams possess a very low density and can be directly brought into relative complex shapes. Therefore, expanded Polypropylene (EPP) is maybe the most important PP foam at all. Both methods for bead foam production (discontinuous with autoclave and continuous with extrusion process) are described as well as the fusion processe (steam chest molding). The last part of this chapter is designated to the many additives that are used in PP foams (i.e. talc, clay etc.) and their influence on properties like expansion behavior and foam morphology.

Notes

Acknowledgements

For their contribution to this chapter the following people are acknowledged (in alphabetic order): Merve Aksit, Christian Bethke, Dominic Dörr, Katharina Krause, Michaela Mörl, Daniel Raps, Nick Weingart and Chunjing Zhao.

References

  1. 1.
    Europa K (2015) Marktstudie Kunststoffe - Europa Einleitung Deutschland produziert am meisten Kunststoffe in Europa Wichtigste Absatzmärkte für Kunststoffe. 12–15Google Scholar
  2. 2.
    Smithers Rapra (2014) The future of polymer foams to 2019. 110Google Scholar
  3. 3.
    PlasticsEurope (2015) Plastics—the facts 2014/2015: an analysis of European plastics production, demand and waste data. PlasticsEurope 1–34.  https://doi.org/10.1016/j.marpolbul.2013.01.015
  4. 4.
    Altstädt V, Mantey A (2010) Thermoplast- Schaumspritzgießen. Carl Hanser Verlag, MünchenCrossRefGoogle Scholar
  5. 5.
    Nallagundla Venkata Reddy, Rakesh Lingam JC (2015) Handbook of manufacturing engineering and technology. Springer, LondonGoogle Scholar
  6. 6.
    Raps D, Hossieny N, Park CB, Altstädt V (2015) Past and present developments in polymer bead foams and bead foaming technology. Polym (United Kingdom) 56:5–19.  https://doi.org/10.1016/j.polymer.2014.10.078CrossRefGoogle Scholar
  7. 7.
    Eaves D (2004) Handbook of polymer foams. Rapra TechnologyGoogle Scholar
  8. 8.
    Viot P, Plougonven E, Bernard D (2008) Microtomography on polypropylene foam under dynamic loading: 3D analysis of bead morphology evolution. Compos Part A Appl Sci Manuf 39:1266–1281.  https://doi.org/10.1016/j.compositesa.2007.11.014CrossRefGoogle Scholar
  9. 9.
    Ramesh NS, Malwitz N (1996) Bubble growth dynamics in olefinic foams. Polym Prepr 37:783–784Google Scholar
  10. 10.
    Gendron R, Daigneault LE (2003) Continuous extrusion of microcellular polycarbonate. Polym Eng Sci 43:1361–1377.  https://doi.org/10.1002/pen.10116CrossRefGoogle Scholar
  11. 11.
    Li P, Chung TS, Paul DR (2014) Temperature dependence of gas sorption and permeation in PIM-1. J Memb Sci 450:380–388.  https://doi.org/10.1016/j.memsci.2013.09.030CrossRefGoogle Scholar
  12. 12.
    Baldwin DF (1994) Microccellular polymer processing and the design of a continuous sheet processing system. Ph.D. thesisGoogle Scholar
  13. 13.
    Shutov F (1983) Foamed polymers. cellular structure and properties. Adv Polym Sci 51:155–218.  https://doi.org/10.1007/BFb0017587
  14. 14.
    Mills NJ (1993) Handbook of polymeric foams and foam technology. Polymer (Guildf) 34:2237.  https://doi.org/10.1016/0032-3861(93)90758-3CrossRefGoogle Scholar
  15. 15.
    Okolieocha C, Raps D, Subramaniam K, Altstädt V (2015) Microcellular to nanocellular polymer foams: progress (2004–2015) and future directions—a review. Eur Polym J 73:500–519.  https://doi.org/10.1016/j.eurpolymj.2015.11.001CrossRefGoogle Scholar
  16. 16.
    Schellenberg J, Wallis M (2010) Dependence of thermal properties of expandable polystyrene particle foam on cell size and density. J Cell Plast 46:209–222.  https://doi.org/10.1177/0021955X09350803CrossRefGoogle Scholar
  17. 17.
    Chen Y, Das R, Battley M (2015) Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams. Int J Solids Struct 52:150–164.  https://doi.org/10.1016/j.ijsolstr.2014.09.022CrossRefGoogle Scholar
  18. 18.
    Ashby MF, Medalist RFM (1983) The mechanical properties of cellular solids. Metall Trans A 14:1755–1769.  https://doi.org/10.1007/BF02645546CrossRefGoogle Scholar
  19. 19.
    J.E. Martini, F.A. Waldman NPS (1982) The production and analysis of microcellular thermoplastic foams. SPE ANTEC Technical Paper 43:674–676Google Scholar
  20. 20.
    Doroudiani S, Park MTK (1998) Processing and characterization of microcellular foamed high density polyethylene/isotactic polypropylene blends. Polym Eng Sci 1205–1215Google Scholar
  21. 21.
    Doroudiani S, Kortschot MT (2003) Polystyrene foams: III. structure-tensile properties relationships. J Appl Polym Sci 90:1427–1434.  https://doi.org/10.1002/app.12805CrossRefGoogle Scholar
  22. 22.
    Rachtanapun P, Selke SEM, Matuana LM (2004) Relationship between cell morphology and impact strength of microcellular foamed high-density polyethylene/polypropylene blends. Polym Eng Sci 44:1551–1560.  https://doi.org/10.1002/pen.20152CrossRefGoogle Scholar
  23. 23.
    Ferkl P, Pokorný R, Bobák M, Kosek J (2013) Heat transfer in one-dimensional micro- and nano-cellular. Chem Eng Sci 97:50–58CrossRefGoogle Scholar
  24. 24.
    Köppl T, Raps D, Altstädt V (2014) E-PBT—bead foaming of poly(butylene terephthalate) by underwater pelletizing. J Cell Plast 50:475–487.  https://doi.org/10.1177/0021955X14528524CrossRefGoogle Scholar
  25. 25.
    Spitael P, Macosko CW (2004) Strain hardening in polypropylenes and its role in extrusion foaming. Polym Eng Sci 44:2090–2100.  https://doi.org/10.1002/pen.20214CrossRefGoogle Scholar
  26. 26.
    Borealis (2010) Daploy WB140HMS Daploy WB140HMSGoogle Scholar
  27. 27.
    Stadler FJ, Piel C, Klimke K et al (2006) Influence of type and content of various comonomers on long-chain branching of ethene/α-olefin copolymers. Macromolecules 39:1474–1482.  https://doi.org/10.1021/ma0514018CrossRefGoogle Scholar
  28. 28.
    Stadler FJ, Nishioka A, Stange J et al (2007) Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows. Rheol Acta 46:1003–1012.  https://doi.org/10.1007/s00397-007-0190-yCrossRefGoogle Scholar
  29. 29.
    Hasan MM, Li YG, Li G et al (2010) Determination of solubilities of CO2 in linear and branched polypropylene using a magnetic suspension balance and a PVT apparatus. J Chem Eng Data 55:4885–4895.  https://doi.org/10.1021/je100488vCrossRefGoogle Scholar
  30. 30.
    Li YG, Park CB (2009) Effects of branching on the pressure–volume–temperature behaviors of PP/CO2 solutions. Ind Eng Chem Res 48:6633–6640.  https://doi.org/10.1021/ie8015279CrossRefGoogle Scholar
  31. 31.
    Ferri D, Lomellini P (1999) Melt rheology of randomly branched polystyrenes. J Rheol J Rheol J Rheol 43:1272–1355.  https://doi.org/10.1122/1.4966040CrossRefGoogle Scholar
  32. 32.
    Venkatraman S, Okano M (1990) Polymer melts : the Cox-Merz rule revisited. Polym Eng Sci 30:308–313.  https://doi.org/10.1002/pen.760300508
  33. 33.
    McCallum TJ, Kontopoulou M, Park CB et al (2007) The rheological and physical properties of linear and branched polypropylene blends. Polym Eng Sci 47:1133–1140.  https://doi.org/10.1002/pen.20798CrossRefGoogle Scholar
  34. 34.
    Münstedt H (2011) Rheological properties and molecular structure of polymer melts. Soft Matter 7:2273–2283.  https://doi.org/10.1039/C0SM00891ECrossRefGoogle Scholar
  35. 35.
    Brinson HF, Brinson LC (2008) Polymer engineering science and viscoelasticity. Springer, US, Boston, MACrossRefGoogle Scholar
  36. 36.
    Carella JM, Gotro JT, Graessley WW (1986) Thermorheological effects of long-chain branching in entangled polymer melts. Macromolecules 19:659–667.  https://doi.org/10.1021/ma00157a031CrossRefGoogle Scholar
  37. 37.
    Malmberg A, Liimatta J, Lehtinen A, Löfgren B (1999) Characteristics of long chain branching in ethene polymerization with single site catalysts. Macromolecules 32:6687–6696.  https://doi.org/10.1021/ma9907136CrossRefGoogle Scholar
  38. 38.
    Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34:6281–6290.  https://doi.org/10.1021/ma0017034CrossRefGoogle Scholar
  39. 39.
    Raps D, Köppl T, Heymann L, Altstädt V (2017) Rheological behaviour of a high-melt-strength polypropylene at elevated pressure and gas loading for foaming purposes. Rheol Acta 56:95–111.  https://doi.org/10.1007/s00397-016-0988-6CrossRefGoogle Scholar
  40. 40.
    Watanabe K, Suzuki T, Masubuchi Y et al (2003) Crystallization kinetics of polypropylene under high pressure and steady shear flow. Polymer (Guildf) 44:5843–5849.  https://doi.org/10.1016/S0032-3861(03)00604-9CrossRefGoogle Scholar
  41. 41.
    Doroudiani S, Park CB (1996) Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polym Eng Sci Sci 36:2645–2662CrossRefGoogle Scholar
  42. 42.
    Kardos JL, Christiansen AW, Baer E (1966) Structure of pressure-crystallized polypropylene. J Polym Sci Part A-2 Polym Phys 4:777–788.  https://doi.org/10.1002/pol.1966.160040509
  43. 43.
    Brückner S, Phillips PJ, Mezghani K, Meille SV (1997) On the crystallization of γ-isotactic polypropylene: a high pressure study. Macromol Rapid Commun 18:1–7.  https://doi.org/10.1002/marc.1997.030180101CrossRefGoogle Scholar
  44. 44.
    La Carrubba V, Brucato V, Piccarolo S (2004) The use of master curves to describe the simultaneous effect of cooling rate and pressure on polymer crystallization. Polym Int 53:61–68.  https://doi.org/10.1002/pi.1404CrossRefGoogle Scholar
  45. 45.
    Naguib HE, Park CB, Song SW (2005) Effect of supercritical gas on crystallization of linear and branched polypropylene resins with foaming additives. Ind Eng Chem Res 44:6685–6691.  https://doi.org/10.1021/ie0489608CrossRefGoogle Scholar
  46. 46.
    Liao R, Yu W, Zhou C et al (2008) The formation of γ-crystal in long-chain branched polypropylene under supercritical carbon dioxide. J Polym Sci Part B: Polym Phys 46:441–451.  https://doi.org/10.1002/polb.21372CrossRefGoogle Scholar
  47. 47.
    Yuan M, Turng LS (2005) Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites. Polymer (Guildf) 46:7273–7292.  https://doi.org/10.1016/j.polymer.2005.06.054CrossRefGoogle Scholar
  48. 48.
    Takada M, Tanigaki M, Ohshima M (2001) Effects of CO2 on crystallization kinetics of polypropylene. Polym Eng Sci 41:1938–1946.  https://doi.org/10.1002/pen.10890CrossRefGoogle Scholar
  49. 49.
    Takada M, Ohshima M (2003) Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polym Eng Sci 43:479–489.  https://doi.org/10.1002/pen.10039CrossRefGoogle Scholar
  50. 50.
    Oda T, Saito H (2004) Exclusion effect of carbon dioxide on the crystallization of polypropylene. J Polym Sci Part B: Polym Phys 42:1565–1572.  https://doi.org/10.1002/polb.20076CrossRefGoogle Scholar
  51. 51.
    Xu ZM, Jiang XL, Liu T et al (2007) Foaming of polypropylene with supercritical carbon dioxide. J Supercrit Fluids 41:299–310.  https://doi.org/10.1016/j.supflu.2006.09.007CrossRefGoogle Scholar
  52. 52.
    Li G, Wang J, Park CB, Altstädt V (2007) Solubility measurements of N2 and CO2 in polypropylene and ethene/octene copolymer. J Apllied Polym Sci 103:2945–2953CrossRefGoogle Scholar
  53. 53.
    Jiang XL, Liu T, Xu ZM et al (2009) Effects of crystal structure on the foaming of isotactic polypropylene using supercritical carbon dioxide as a foaming agent. J Supercrit Fluids 48:167–175.  https://doi.org/10.1016/j.supflu.2008.10.006CrossRefGoogle Scholar
  54. 54.
    Naguib HE, Park CB, Lee PC (2003) Effect of talc content on the volume expansion ratio of extruded PP Foams. J Cell Plast 39:499–511.  https://doi.org/10.1177/002195503039247CrossRefGoogle Scholar
  55. 55.
    Colton JS, Suh NP (1987) Nucleation of microcellular foam: theory and practice. Polym Eng Sci 27:500–503.  https://doi.org/10.1002/pen.760270704CrossRefGoogle Scholar
  56. 56.
    Reverchon E, Cardea S (2007) Production of controlled polymeric foams by supercritical CO2. J Supercrit Fluids 40:144–152.  https://doi.org/10.1016/j.supflu.2006.04.013CrossRefGoogle Scholar
  57. 57.
    Lee ST (2000) Foam extrusion. CRC Press LLC, Boca RatonGoogle Scholar
  58. 58.
    Parrish RG (1972) Microcellular Foam Sheet. 13Google Scholar
  59. 59.
    Yu L, Zhu Q, Yu T (2013) Development and application of expanded polypropylene foam. J Wuhan Univ Technol Mater Sci Ed 28:373–379.  https://doi.org/10.1007/s11595-013-0698-1CrossRefGoogle Scholar
  60. 60.
    Nam GJ, Yoo JH, Lee JW (2005) Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances. J Appl Polym Sci 96:1793–1800.  https://doi.org/10.1002/app.21619CrossRefGoogle Scholar
  61. 61.
    Naguib HE, Park CB, Reichelt N (2004) Fundamental foaming mechanisms governing the volume expansion of extrudedpolypropylene foams. J Appl Polym Sci 91:2661–2668.  https://doi.org/10.1002/app.13448CrossRefGoogle Scholar
  62. 62.
    Burt JG (1979) The elements of expansion of thermoplastics: part II. J Cell Plast 15:158–162.  https://doi.org/10.1177/0021955X7901500305CrossRefGoogle Scholar
  63. 63.
    Mohebbi A, Mighri F, Ajji A, Rodrigue D (2015) Current issues and challenges in polypropylene foaming: a review. Cell Polym 34:299–337CrossRefGoogle Scholar
  64. 64.
    Kaewmesri W (2006) Effects of CO2 and talc contents on foaming behavior of recyclable high-melt-strength PP. J Cell Plast 42:405–428.  https://doi.org/10.1177/0021955X06066995CrossRefGoogle Scholar
  65. 65.
    Chaudhary AK, Jayaraman K (2011) Extrusion of linear polypropylene-clay nanocomposite foams. Polym Eng Sci 51:1749–1756.  https://doi.org/10.1002/pen.21961CrossRefGoogle Scholar
  66. 66.
    Zhai W, Kuboki T, Wang L et al (2010) Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion. Ind Eng Chem Res 49:9834–9845CrossRefGoogle Scholar
  67. 67.
    Zheng WG, Lee YH, Park CB (2010) Use of nanoparticles for improving the foaming behaviors of linear PP. J Appl Polym Sci 21.  https://doi.org/10.1002/app.32253
  68. 68.
    Lee SH, Zhang Y, Kontopoulou M et al (2011) Optimization of dispersion of nanosilica particles in a PP matrix and their effect on foaming. Int Polym Process 26:388–398.  https://doi.org/10.3139/217.2403CrossRefGoogle Scholar
  69. 69.
    Nofar M, Majithiya K, Kuboki T, Park CB (2012) The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. J Cell Plast 48:271–287.  https://doi.org/10.1177/0021955X12440271CrossRefGoogle Scholar
  70. 70.
    Lee ST, Ramesh NS (2005) Thermoplastic foam processing principles and development. CRC Press LLC, Boca RatonGoogle Scholar
  71. 71.
    Park CB, Cheung LK (1997) A study of cell nucleation in the extrusion of polypropylene foams. Polym Eng Sci 37:1–10.  https://doi.org/10.1002/pen.11639CrossRefGoogle Scholar
  72. 72.
    Behravesh AH, Park CB, Cheung LK, Venter RD (1996) Extrusion of polypropylene foams with hydrocerol and lsopentane. J Vinyl Addit Technol 2:349–357CrossRefGoogle Scholar
  73. 73.
    Tabatabaei A, Barzegari MR, Mark LH, Park CB (2017) Visualization of polypropylene’s strain-induced crystallization under the influence of supercritical CO2 in extrusion. Polymer (United Kingdom) 122:312–322.  https://doi.org/10.1016/j.polymer.2017.06.052CrossRefGoogle Scholar
  74. 74.
    Hasan MM, Li YG, Li G et al (2010) Determination of solubilities of CO2 in linear and branched polypropylene using a magnetic suspension balance and a PVT apparatus. J Chem Eng Data 55:4885–4895.  https://doi.org/10.1021/je100488vCrossRefGoogle Scholar
  75. 75.
    Xu Z, Xue P, Zhu F, He J (2005) Effects of formulations and processing parameters on foam morphologies in the direct extrusion foaming of polypropylene using a single-screw extruder. J Cell Plast 41:169–185.  https://doi.org/10.1177/0021955X05051740CrossRefGoogle Scholar
  76. 76.
    Zhai W, Kim YW, Park CB (2010) Steam-chest molding of expanded polypropylene foams. 1. DSC simulation of bead foam processing. Ind Eng Chem Res 49:9822–9829.  https://doi.org/10.1021/ie101085sCrossRefGoogle Scholar
  77. 77.
    Klempner D, Frisch K (2004) Handbook of polymeric foams and foam technology. Hanser, MünchenGoogle Scholar
  78. 78.
    Wörthwein H (2014) Method for the manufacture of EPP moulded parts. 1:1–10Google Scholar
  79. 79.
    BASF SE (2017) Neopolen P—designed for new ideas. Prod BrochGoogle Scholar
  80. 80.
    Market 2015–2019 (2015) Global expanded polypropylene (EPP) foam (low density, high density & porous PP)Google Scholar
  81. 81.
    Kuninori H, Shimada H (1983) Pre-foamed particles of polypropylene resin and process for production thereof (US Patent US 4379859). 1–4Google Scholar
  82. 82.
    Nofar M, Guo Y, Park CB (2013) Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind Eng Chem Res 52:2297–2303.  https://doi.org/10.1021/ie302625eCrossRefGoogle Scholar
  83. 83.
    Guo P, Liu Y, Xu Y et al (2014) Effects of saturation temperature/pressure on melting behavior and cell structure of expanded polypropylene bead. J Cell Plast 50:321–335.  https://doi.org/10.1177/0021955X14525798CrossRefGoogle Scholar
  84. 84.
    Lan X, Zhai W, Zheng W (2013) Critical effects of polyethylene addition on the autoclave foaming behavior of polypropylene and the melting behavior of polypropylene foams blown with n-pentane and CO2. Ind Eng Chem Res 52:5655–5665.  https://doi.org/10.1021/ie302899mCrossRefGoogle Scholar
  85. 85.
    Tang L, Zhai W, Zheng W (2011) Autoclave preparation of expanded polypropylene/poly(lactic acid) blend bead foams with a batch foaming process. J Cell Plast 47:429–446.  https://doi.org/10.1177/0021955X11406004CrossRefGoogle Scholar
  86. 86.
    Harrison IR (1985) Modelling ‘melting’ in macromolecules. Polymer (Guildf) 26:3–7.  https://doi.org/10.1016/0032-3861(85)90050-3
  87. 87.
    Samuels RJ (1975) Quantitative structural characterization of the melting behavior of isotactic polypropylene. J Polym Sci Polym Phys Ed 13:1417–1446.  https://doi.org/10.1002/pol.1975.180130713CrossRefGoogle Scholar
  88. 88.
    Padden FJ, Keith HD (1959) Spherulitic crystallization in polypropylene. J Appl Phys 30:1479–1484.  https://doi.org/10.1063/1.1734985CrossRefGoogle Scholar
  89. 89.
    Pae KD (1968) Solid-solid transition of isotactic polypropylene. Polymer (Guildf) 6:657–663.  https://doi.org/10.1002/pol.1968.160060401
  90. 90.
    Zhang R, Luo X, Wang Q, Ma D (1994) Melting behavior of low ethylene content polypropylene copolymers with and without nucleating agents. Chin J Polym Sci 12:246–255Google Scholar
  91. 91.
    Hingmann R, Rieger J, Kersting M (1995) hingmann_1995.pdf. Macromolecules 28:3801–3806CrossRefGoogle Scholar
  92. 92.
    Choi JB, Chung MJ, Yoon JS (2005) Formation of double melting peak of poly(propylene-co-ethylene-co-1-butene) during the preexpansion process for production of expanded polypropylene. Ind Eng Chem Res 44:2776–2780.  https://doi.org/10.1021/ie0401399CrossRefGoogle Scholar
  93. 93.
    Cho K, Li F, Choi J (1999) Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer (Guildf) 40:1719–1729.  https://doi.org/10.1016/S0032-3861(98)00404-2CrossRefGoogle Scholar
  94. 94.
    Nofar M, Ameli A, Park CB (2015) Development of polylactide bead foams with double crystal melting peaks. Polymer (Guildf) 69:83–94.  https://doi.org/10.1016/j.polymer.2015.05.048CrossRefGoogle Scholar
  95. 95.
    Li G, Wang J, Park CB, Simha R (2007) Measurement of gas solubility in linear/branched PP melts. J Polym Sci Part B: Polym Phys 45:2497–2508.  https://doi.org/10.1002/polb.21229CrossRefGoogle Scholar
  96. 96.
    Stastny F, Gaeth R, Trieschmann HGD (1971) Process of making particulate expanded olefin polymers having high thermal stability. 59–61Google Scholar
  97. 97.
    Köppl T, Raps D, Altstädt V (2014) E-PBT—bead foaming of poly(butylene terephthalate) by underwater pelletizing. J Cell Plast 50:475–487.  https://doi.org/10.1177/0021955X14528524CrossRefGoogle Scholar
  98. 98.
    Kurtz GmbH (2017) Technical information EPP pre-expansion. 30Google Scholar
  99. 99.
    BASF SE (2017) Neopolen P—Technical Information. 1–10Google Scholar
  100. 100.
    Yang F, Pitchumani R (2002) Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules 35:3213–3224.  https://doi.org/10.1021/ma010858oCrossRefGoogle Scholar
  101. 101.
    Wool RP, Yuan B-L, McGarel OJ (1989) Welding of polymer interfaces. Polym Eng Sci 29:1340–1367.  https://doi.org/10.1002/pen.760291906CrossRefGoogle Scholar
  102. 102.
    Anand JN, Kabam HJ (1969) Interfacial contact and bonding in autohesion: I—contact theory. J Adhes 1:16–23.  https://doi.org/10.1080/00218466908077369CrossRefGoogle Scholar
  103. 103.
    Anand JN, Balwinski RZ (1969) Interfacial contact and bonding in autohesion: II—intermolecular forces. J Adhes 1:24–30.  https://doi.org/10.1080/00218466908077370CrossRefGoogle Scholar
  104. 104.
    Anand JN (1969) Interfacial contact and bonding in autohesion: III—parallel plate attraction. J Adhes 1:31–37.  https://doi.org/10.1080/00218466908077371CrossRefGoogle Scholar
  105. 105.
    Anand JN, Dipzinski L (1970) Interfacial contact and bonding in autohesion: IV—experimental verification of theory. J Adhes 2:16–22.  https://doi.org/10.1080/0021846708544575CrossRefGoogle Scholar
  106. 106.
    Anand JN (1970) Interfacial contact and bonding in autohesion: V—bonding of “flat” surfaces. J Adhes 2:23–28.  https://doi.org/10.1080/0021846708544576CrossRefGoogle Scholar
  107. 107.
    De Gennes PG (1976) Dynamics of entangled polymer solutions. I. The Rouse model. Macromolecules 9:587–593.  https://doi.org/10.1021/ma60052a011CrossRefGoogle Scholar
  108. 108.
    De Gennes PG (1976) Dynamics of Entangled polymer solutions. II. Inclusion of hydrodynamic interactions. Macromolecules 9:594–598.  https://doi.org/10.1021/ma60052a012CrossRefGoogle Scholar
  109. 109.
    Bousmina M, Qiu H, Grmela M, Klemberg-Sapieha JE (1998) Diffusion at polymer/polymer interfaces probed by rheological tools. Macromolecules 31:8273–8280.  https://doi.org/10.1021/ma980562rCrossRefGoogle Scholar
  110. 110.
    Zhai W, Kim YW, Jung DW, Park CB (2011) Steam-chest molding of expanded polypropylene foams. 2. Mechanism of interbead bonding. Ind Eng Chem Res 50:5523–5531.  https://doi.org/10.1021/ie101753wCrossRefGoogle Scholar
  111. 111.
    Guanghong H, Yue W (2012) Microcellular foam injection molding process. Some crit issues inject molding.  https://doi.org/10.5772/34513
  112. 112.
    Volpe V Foam injection molding with physical blowing agentsGoogle Scholar
  113. 113.
    Ruckdäschel H (2008) Micro- and nanostructured polymer blends—processing, properties and foaming behaviourGoogle Scholar
  114. 114.
    Shaayegan V, Wang G, Park CB (2016) Effect of foam processing parameters on bubble nucleation and growth dynamics in high-pressure foam injection molding. Chem Eng Sci 155:27–37.  https://doi.org/10.1016/j.ces.2016.07.040CrossRefGoogle Scholar
  115. 115.
    Reza M (2009) Structure-flexural modulus relationships in polymeric structuralGoogle Scholar
  116. 116.
    Kramschuster A, Cavitt R, Ermer D et al (2006) Effect of processing conditions on shrinkage and warpage and morphology of injection moulded parts using microcellular injection moulding. Plast Rubber Compos 35:198–209.  https://doi.org/10.1179/174328906X128199CrossRefGoogle Scholar
  117. 117.
    Zhang L, Zhao G, Dong G et al (2015) Bubble morphological evolution and surface defect formation mechanism in the microcellular foam injection molding process. RSC Adv 5:70032–70050.  https://doi.org/10.1039/C5RA07512BCrossRefGoogle Scholar
  118. 118.
    Wu PC, Jones G et al (2007) Novel microporous films and their composites. J Eng Fiber Fabr 2:49–59Google Scholar
  119. 119.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462.  https://doi.org/10.1021/cr020738uCrossRefPubMedGoogle Scholar
  120. 120.
    Bai H, Wang Y, Zhang Z et al (2009) Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 42:6647–6655.  https://doi.org/10.1021/ma9001269CrossRefGoogle Scholar
  121. 121.
    Tordjeman P, Robert C, Marin G, Gerard P (2001) The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur Phys J E 4:459–465CrossRefGoogle Scholar
  122. 122.
    Varga J, Karger-kocsis J (1993) The occurence of transcrystallization or row-nucleated cylindritic crystallization as a result of shearing in a glass-fiber-reinforced polypropylene. Compos Sci Technol 48:191–198CrossRefGoogle Scholar
  123. 123.
    Crissman JM (1969) Mechanical relaxation in polypropylene as a function of polymorphism and degree of lamella orientation. J Polym Sci 7:389–404Google Scholar
  124. 124.
    Varga J (2002) Β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41:1121–1171.  https://doi.org/10.1081/MB-120013089CrossRefGoogle Scholar
  125. 125.
    Kersch M, Schmidt HW, Altstädt V (2016) Influence of different beta-nucleating agents on the morphology of isotactic polypropylene and their toughening effectiveness. Polymer (United Kingdom) 98:320–326.  https://doi.org/10.1016/j.polymer.2016.06.051CrossRefGoogle Scholar
  126. 126.
    Jacoby P (2014) Beta nucleation of polypropylene—properties, technology and applications. Elsevier, AmsterdamGoogle Scholar
  127. 127.
    Silverstein MS (2014) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39:199–234.  https://doi.org/10.1016/j.progpolymsci.2013.07.003CrossRefGoogle Scholar
  128. 128.
    Nguyen TH, Vayer M, Sinturel C (2018) PS-b-PMMA/PLA blends for nanoporous templates with hierarchical and tunable pore size. Appl Surf Sci 427:464–470.  https://doi.org/10.1016/j.apsusc.2017.08.160CrossRefGoogle Scholar
  129. 129.
    Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer (Guildf) 55:304–320CrossRefGoogle Scholar
  130. 130.
    Sergienko AY, Tai H, Narkis M, Silverstein MS (2002) Polymerized high internal-phase emulsions: properties and interaction with water. J Appl Polym Sci 84:2018–2027.  https://doi.org/10.1002/app.10555CrossRefGoogle Scholar
  131. 131.
    Wang K, Wu F, Zhai W, Zheng W (2013) Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion. J Appl Polym Sci 129:2226–2253Google Scholar
  132. 132.
    Scheve BJ, Mayfield JW, DeNicola JAJ (1972) US Patent 3Google Scholar
  133. 133.
    Zhang ZJ, Wan D, Xing HP et al (2012) A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer (Guildf) 53Google Scholar
  134. 134.
    Lin W, Shao Z, Jy D, Chung TCM (2009) Cross-linked polypropylene prepared by PP copolymers containing flexible styrene groups. Macromolecules 42:3750–3754CrossRefGoogle Scholar
  135. 135.
    Schöne J, Kotter I, Grellmann W (2012) Zeitschrift Kunststofftechnik. J Plast Technol 8:231–251Google Scholar
  136. 136.
    Blomenhofer M, Ganzleben S, Hanft D et al (2005) “Designer” nucleating agents for polypropylene. Macromolecules 38:3688–3695.  https://doi.org/10.1021/ma0473317CrossRefGoogle Scholar
  137. 137.
    Huang H-X, Wang J-K (2007) Improving polypropylene microcellular foaming through blending and the addition of nano-calcium carbonate. J Appl Polym Sci 106:505–513.  https://doi.org/10.1002/app.26483CrossRefGoogle Scholar
  138. 138.
    Naiki M, Fukui Y, Matsumura T et al (2001) Effect of talc on the crystallization of isotactic polypropylene. J Appl Polym Sci 79:1693–1703.  https://doi.org/10.1002/1097-4628(20010228)79:9%3c1693:AID-APP190%3e3.0.CO;2-PCrossRefGoogle Scholar
  139. 139.
    Okamoto M, Nam PH, Maiti P et al (2001) Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano Lett 1:503–505.  https://doi.org/10.1021/nl010051+CrossRefGoogle Scholar
  140. 140.
    Jiang X-L, Bao J-B, Liu T et al (2009) Microcellular foaming of polypropylene/clay nanocomposites with supercritical carbon dioxide. J Cell Plast 45:515–538.  https://doi.org/10.1177/0021955X09339470CrossRefGoogle Scholar
  141. 141.
    Antunes M, Gedler G, Velasco JI (2013) Multifunctional nanocomposite foams based on polypropylene with carbon nanofillers. J Cell Plast 49:259–279.  https://doi.org/10.1177/0021955X13477433CrossRefGoogle Scholar
  142. 142.
    Wang C, Ying S, Xiao Z (2013) Preparation of short carbon fiber/polypropylene fine-celled foams in supercritical CO2. J Cell Plast 49:65–82.  https://doi.org/10.1177/0021955X12459642CrossRefGoogle Scholar
  143. 143.
    Barboza ACRN, De Paoli M (2002) Polipropileno Carregado com Microesferas Ocas de Vidro (Glass BubblesTM): Obtenção de Espuma Sintética. Polímeros 12:130–137.  https://doi.org/10.1590/S0104-14282002000200013
  144. 144.
    Ss H, Hsu PP (2013) Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. J Ind Eng Chem 19:1377–1383CrossRefGoogle Scholar
  145. 145.
    Colton JS (1989) The nucleation of microcellular foams in semi-crystalline thermoplastics. Mater Manuf Process 4:253–262.  https://doi.org/10.1080/10426918908956288CrossRefGoogle Scholar
  146. 146.
    Bertrand J-N (1986) Expanded polypropylene films and process for preparing them. EP 0 178 282 A2Google Scholar
  147. 147.
    Libster D, Aserin A, Garti N (2007) Advanced nucleating agents for polypropylene. Polym Adv Technol 18:685–695.  https://doi.org/10.1002/pat.970CrossRefGoogle Scholar
  148. 148.
    Varga J, Menyhárd A (2007) Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromol Theory Simulations 40:2422–2431Google Scholar
  149. 149.
    Stumpf M, Spörrer A, Schmidt H-W, Altstädt V (2011) Influence of supramolecular additives on foam morphology of injection-molded i-PP. J Cell Plast 47:519–534.  https://doi.org/10.1177/0021955X11408769CrossRefGoogle Scholar
  150. 150.
    Mörl M, Steinlein C, Kreger K et al (2017) Improved compression properties of polypropylene extrusion foams by supramolecular additives. J Cell Plast.  https://doi.org/10.1177/0021955X17695096

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Polymer EngineeringUniversity of BayreuthBayreuthGermany
  2. 2.Neue Materialien Bayreuth GmbHBayreuthGermany

Personalised recommendations