Chemical Diversity and Biological Activity of African Propolis

  • Natalia Blicharska
  • Veronique SeidelEmail author
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 109)


Natural remedies have for centuries played a significant role in traditional medicine and continue to be a unique reservoir of new chemical entities in drug discovery and development research. Propolis is a natural substance, collected by bees mainly from plant resins, which has a long history of use as a folk remedy to treat a variety of ailments. The highly variable phytochemical composition of propolis is attributed to differences in plant diversity within the geographic regions from which it is collected. Despite the fact that the last five decades has seen significant advancements in the understanding of the chemistry and biological activity of propolis, a search of the literature has revealed that studies on African propolis to date are rather limited. The aim of this contribution is to report on the current body of knowledge of African propolis, with a particular emphasis on its chemistry and biological activity. As Africa is a continent with a rich flora and a vast diversity of ecosystems, there is a wide range of propolis phytochemicals that may be exploited in the development of new drug scaffolds.


Africa Propolis Biological activity Chemical diversity Phytochemicals 


  1. 1.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Marcucci M (1995) Propolis: chemical composition, biological properties and therapeutic activity. Apidologie 26:83CrossRefGoogle Scholar
  3. 3.
    Bankova VS, de Castro SL, Marcucci MC (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31:3CrossRefGoogle Scholar
  4. 4.
    Bankova V (2005) Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol 100:114PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sforcin JM, Bankova V (2011) Propolis: is there a potential for the development of new drugs. J Ethnopharmacol 133:253PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bueno-Silva B, Marsola A, Ikegaki M, Alencar SM, Rosalen PL (2016) The effect of seasons on Brazilian red propolis and its botanical source: chemical composition and antibacterial activity. Nat Prod Res 31:1318PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Castaldo S, Capasso F (2002) Propolis, an old remedy used in modern medicine. Fitoterapia 73:S1PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wagh VD (2013) Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Sci 2013:308249PubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang S, Zhang CP, Wang K, Li G, Hu FL (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Silva-Carvalho R, Baltazar F, Almeida-Aguiar C (2015) Propolis: a complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Alternat Med 2015:206439PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bankova V (2005) Recent trends and important developments in propolis research. Evid Based Complement Alternat Med 2:29PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Petrova A, Popova M, Kuzmanova C, Tsvetkova I, Naydenski H, Muli E, Bankova V (2010) New biologically active compounds from Kenyan propolis. Fitoterapia 81:509PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    de Castro Ishidaa VF, Negri G, Salatino A, Bandeira MFCL (2011) A new type of Brazilian propolis: prenylated benzophenones in propolis from Amazon and effects against cariogenic bacteria. Food Chem 125:966CrossRefGoogle Scholar
  15. 15.
    Piccinelli AL, Mencherini T, Celano R, Mouhoubi Z, Tamendjari A, Aquino RP, Rastrelli L (2013) Chemical composition and antioxidant activity of Algerian propolis. J Agric Food Chem 61:5080PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kardar MN, Zhang T, Coxon GD, Watson DG, Fearnley J, Seidel V (2014) Characterisation of triterpenes and new phenolic lipids in Cameroonian propolis. Phytochemistry 106:156PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Papachroni D, Graikou K, Kosalec I, Damianakos H, Ingram V, Chinou I (2015) Phytochemical analysis and biological evaluation of selected African propolis samples from Cameroon and Congo. Nat Prod Commun 10:67PubMedPubMedCentralGoogle Scholar
  18. 18.
    Marquez Hernandez I, Cuesta-Rubio O, Campo Fernandez M, Rosado Perez A, Montes de Oca Porto R, Piccinelli AL, Rastrelli L (2010) Studies on the constituents of yellow Cuban propolis: GC-MS determination of triterpenoids and flavonoids. J Agric Food Chem 58:4725PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sun YM, Wu HL, Wang JY, Liu Z, Zhai M, Yu RQ (2014) Simultaneous determination of eight flavonoids in propolis using chemometrics-assisted high performance liquid chromatography-diode array detection. J Chromatogr B 962:59CrossRefGoogle Scholar
  20. 20.
    Noureddine H, Hage-Sleiman R, Wehbi B, Fayyad-Kazan H, Hayar S, Traboulssi M, Alyamani OA, Faour WH, El Makhour Y (2017) Chemical characterization and cytotoxic activity evaluation of Lebanese propolis. Biomed Pharmacother 95:298PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Siheri W, Zhang T, Ebiloma GU, Biddau M, Woods N, Hussain MY, Clements CJ, Fearnley J, Ebel RE, Paget T, Muller S, Carter KC, Ferro VA, De Koning HP, Watson DG (2016) Chemical and antimicrobial profiling of propolis from different regions within Libya. PLoS One 11:e0155355PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Boufadi YM, Soubhye J, Riazi A, Rousseau A, Vanhaeverbeek M, Nève J, Van Antwerpen P (2014) Characterization and antioxidant properties of six Algerian propolis extracts: ethyl acetate extracts inhibit myeloperoxidase activity. Int J Mol Sci 15:2327PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Segueni N, Alabdul Magid A, Decarme M, Rhouati S, Lahouel M, Antonicelli F, Hornebeck W (2011) Inhibition of stromelysin-1 by caffeic acid derivatives from a propolis sample from Algeria. Planta Med 77:999PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ibrahim RS, Wanas AS, El-Din AAS, Radwan MM, Elsohly MA, Metwally AM (2014) Isolation of eleven phenolic compounds from propolis (bee glue) collected in Alexandria, Egypt. Planta Med 80:PE5Google Scholar
  25. 25.
    Segueni N, Benlabed K, Hassane B, Moussaoui F, Zellagui A, Lahouel M, Rhouati S (2014) Antibacterial activity of two Algerian propolis. IJPSR 25:106Google Scholar
  26. 26.
    Segueni N, Zellagui A, Moussaoui F, Lahouel M, Rhouati S (2016) Flavonoids from Algerian propolis. Arab J Chem 9:S425CrossRefGoogle Scholar
  27. 27.
    El Hady FKA, Shaker KH, Imhoff JF, Zinecker H, Salah NM, Ibrahim AM (2013) Bioactive metabolites from propolis inhibit superoxide anion radical, acetylcholinesterase and phosphodiesterase (PDE4). IJPSR 21:338Google Scholar
  28. 28.
    Martos I, Cossentini M, Ferreres F, Tomas-Barberan FA (1997) Flavonoid composition of Tunisian honeys and propolis. J Agric Food Chem 45:2824CrossRefGoogle Scholar
  29. 29.
    Omar RM, Igoli J, Gray AI, Ebiloma GU, Clements C, Fearnley J, Ebel RA, Zhang T, De Koning HP, Watson DG (2016) Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma brucei. Phytochem Anal 27:107PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    El-Bassuony AA (2009) New prenylated compound from Egyptian propolis with antimicrobial activity. Rev Latinoamer Quím 37:85Google Scholar
  31. 31.
    El-Bassuony A, AbouZid S (2010) A new prenylated flavanoid with antibacterial activity from propolis collected in Egypt. Nat Prod Commun 5:43PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sakava P, Talla E, Chelea M, Tchinda Tiaabou A, Zeuko’o Menkem E, Laurent S, Mbafor Tanyi J (2014) Pentacyclic triterpenes and crude extracts with antimicrobial activity from Cameroonian brown propolis samples. J Appl Pharm Sci 4:1Google Scholar
  33. 33.
    Talla E, Tamfu AN, Gade IS, Yanda L, Mbafor JT, Laurent S, Elst LV, Popova M, Bankova V (2017) New mono-ether of glycerol and triterpenes with DPPH radical scavenging activity from Cameroonian propolis. Nat Prod Res 31:1379PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Omar R, Igoli JO, Zhang T, Gray AI, Ebiloma GU, Clements CJ, Fearnley J, Edrada Ebel R, Paget T, de Koning HP, Watson DG (2017) The chemical characterization of Nigerian propolis samples and their activity against Trypanosoma brucei. Sci Rep 7:923PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Almutairi S, Eapen B, Chundi SM, Akhalil A, Siheri W, Clements C, Edrada-Ebel R (2014) New anti-trypanosomal active prenylated compounds from African propolis. Phytochem Lett 10:35CrossRefGoogle Scholar
  36. 36.
    Siheri W, Igoli JO, Gray AI, Nasciemento TG, Zhang T, Fearnley J, Watson DG (2014) The isolation of antiprotozoal compounds from Libyan propolis. Phytother Res 28:1756PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kasote D, Ahmad A, Chen W, Combrinck S, Viljoen A (2015) HPTLC MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from propolis. Phytochem Lett 11:326CrossRefGoogle Scholar
  38. 38.
    Kumazawa S, Hamasaka T, Nakayama T (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84:329CrossRefGoogle Scholar
  39. 39.
    Hegazi AG, El Hady FKA (2002) Egyptian propolis: 3. Antioxidant, antimicrobial activities and chemical composition of propolis from reclaimed lands. Z Naturforsch C 57:395PubMedCrossRefGoogle Scholar
  40. 40.
    Trusheva B, Popova M, Koendhori EB, Tsvetkova I, Naydenski C, Bankova V (2011) Indonesian propolis: chemical composition, biological activity and botanical origin. Nat Prod Res 25:606PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Du Toit K, Buthelezi S, Bodenstein J (2009) Anti-inflammatory and antibacterial profiles of selected compounds found in South African propolis. S Afr J Sci 105:470Google Scholar
  42. 42.
    Nader M (2013) Caffeic acid phenethyl ester attenuates IgE-induced immediate allergic reaction. Inflammopharmacology 21:169PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Tolba MF, Esmat A, Al-Abd AM, Azab SS, Khalifa AE, Mosli HA, Abel-Rahman SZ, Abel-Naim AB (2013) Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life 65:716PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Grace D, Khan MS, Friesen K, Ata A (2016) Antimicrobial compounds from Drypetes staudtii. Chem Biodivers 13:913PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hsu YL, Kuo PL, Liu CF, Lin CC (2004) Acacetin-induced cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Cancer Lett 212:53PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hsu YL, Kuo PL, Li CC (2004) Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis. Biochem Pharmacol 67:823PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Singh RP, Agrawal P, Yim D, Agarwal C, Agarwal R (2005) Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: structure–activity relationship with linarin and linarin acetate. Carcinogenesis 26:845PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zhao J, Dasmahapatra AK, Khan SI, Khan IA (2008) Anti-aromatase activity of the constituents from damiana (Turnera diffusa). J Ethnopharmacol 120:387PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Moresco HH, Colla G, Cavalcante ID, Queiroz GS, Pizzolatti MG, Brighente IM (2016) Chemical constituents of Eugenia catharinae and their antioxidant activity. Nat Prod Res 30:2624PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ryu B, Kim HM, Lee JS, Lee CK, Sezirahiga J, Woo JH, Choi JH, Jang DS (2016) New flavonol glucuronides from the flower buds of Syzygium aromaticum (clove). J Agric Food Chem 64:3048PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Suleman T, Vuuren S, Sandasi M, Viljoen AM (2015) Antimicrobial activity and chemometric modelling of South African propolis. J Appl Microbiol 119:981PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Melliou E, Chinou I (2004) Chemical analysis and antimicrobial activity of Greek propolis. Planta Med 70:515PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Qing ZJ, Yong W, Hui LY, Yong LW, Long LH, Ao DJ, Xia PL (2012) Two new natural products from the fruits of Alpinia oxyphylla with inhibitory effects on nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophage cells. Arch Pharm Res 35:2143PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Cushnie TT, Lamb AJ (2005) Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. J Ethnopharmacol 101:243PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Benguedouar L, Lahouel M, Gangloff S, Durlach A, Grange F, Bernard P, Antonicelli F (2015) Algerian ethanolic extract of propolis and galangin decreased melanoma tumour progression in C57BL6 mice. Ann Dermatol Venereol 142:S294CrossRefGoogle Scholar
  56. 56.
    Benguedouar L, Lahouel M, Gangloff SC, Durlach A, Grange F, Bernard P, Antonicelli F (2016) Ethanolic extract of Algerian propolis and galangin decreased murine melanoma T. Anticancer Agents Med Chem 16:1172PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Dimas K, Demetzos C, Angelopoulou D, Kolokouris A, Mavromoustakos T (2000) Biological activity of myricetin and its derivatives against human leukemic cell lines in vitro. Pharmacol Res 42:475PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, Van Der Saag PT, Van Der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lim H, Son KH, Chang HW, Bae K, Kang SS, Kim HP (2008) Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol Pharm Bull 31:2063PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Bonesi M, Tundis R, Deguin B, Loizzo MR, Menichini F, Tillequin F, Menichini F (2008) In vitro biological evaluation of novel 7-O-dialkylaminoalkyl cytotoxic pectolinarigenin derivatives against a panel of human cancer cell lines. Bioorg Med Chem Lett 18:5431PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Lu M, Kong Q, Xu X, Lu H, Lu Z, Yu W, Zuo B, Su J, Guo R (2014) Pectolinarigenin – a flavonoid compound from Cirsium japonicum with potential anti-proliferation activity in MCF-7 breast cancer cell. Trop J Pharm Res 13:225CrossRefGoogle Scholar
  62. 62.
    Yoo YM, Nam JH, Kim MY, Choi J, Park HJ (2008) Pectolinarin and pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats caused by d-galactosamine via an antioxidant mechanism. Biol Pharm Bull 31:760PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Alkhatib R, Joha S, Cheok M, Roumy V, Idziorek T, Preudhomme C, Quesnel B, Sahpaz S, Bailleul F, Hennebelle T (2010) Activity of ladanein on leukemia cell lines and its occurrence in Marrubium vulgare. Planta Med 76:86PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Haid S, Novodomská A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D, Keppler OT (2012) A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology 143:213PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bian QY, Wang SY, Xu LJ, Chan CO, Mok DK, Chen SB (2013) Two new antioxidant diarylheptanoids from the fruits of Alpinia oxyphylla. J Asian Nat Prod Res 15:1094PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Yuan Y, Tan Y, Xu P, Li H, Li Y, Chen WY, Zhang J, Chen F, Huang G (2014) Izalpinin from fruits of Alpinia oxyphylla with antagonistic activity against the rat bladder contractility. Afr J Tradit Complement Altern Med 11:120PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ishitsuka H, Ohsawa C, Ohiwa T, Umeda I, Suhara Y (1982) Antipicornavirus flavone Ro 09-0179. Antimicrob Agents Chemother 22:611PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Huong DT, Luong DV, Thao TTP, Sung TV (2005) A new flavone and cytotoxic activity of flavonoid constituents isolated from Miliusa balansae (Annonaceae). Pharmazie 60:627PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ali HA, Chowdhury AK, Rahman AK, Borkowski T, Nahar L, Sarker SD (2008) Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo2 colon cancer cell line in vitro. Phytother Res 22:1684PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kim DW, Woo HS, Kim JY, Ryuk JA, Park KH, Ko BS (2016) Phenols displaying tyrosinase inhibition from Humulus lupulus. J Enzyme Inhib Med Chem 31:742PubMedPubMedCentralGoogle Scholar
  71. 71.
    Bush C, Noor S, Leischner C, Burkard M, Lauer UM, Venturelli S (2015) Anti-proliferative activity of hop-derived prenylflavonoids against human cancer cell lines. Wien Med Wochenschr 165:258CrossRefGoogle Scholar
  72. 72.
    Wang S, Dunlap TL, Howell CE, Mbachu OC, Rue EA, Phansalkar R, Chen SN, Pauli GF, Dietz BM, Bolton JL (2016) Hop (Humulus lupulus L.) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-hydroxylation. Chem Res Toxicol 29:1142PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mun SH, Joung DK, Kim SB, Park SJ, Seo YS, Gong R, Choi JG, Shin DW, Rho JR, Kang OH, Kwon DY (2014) The mechanism of antimicrobial activity of sophoraflavanone B against methicillin-resistant Staphylococcus aureus. Foodborne Pathog Dis 11:234PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jang DS, Cuendet M, Hawthorne ME, Kardono LBS, Kawanishi K, Fong HHS, Mehta RG, Pezzuto JM, Kinghorn AD (2002) Prenylated flavonoids of the leaves of Macaranga conifera with inhibitory activity against cyclooxygenase-2. Phytochemistry 61:867PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Milligan SR, Kalita JC, Pocock V, Van De Kauter V, Stevens JF, Deinzer ML, Rong H, De Keukeleire D (2000) The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J Clin Endocrinol Metab 85:4912PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Saad M, Salam R, Kenawy S, Attia A (2015) Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacol Rep 67:115PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Pratsinis H, Kletsas D, Melliou E, Chinou I (2010) Antiproliferative activity of Greek propolis. J Med Food 13:286PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Kumazawa S, Goto H, Hamasaka T, Fukumoto S, Fujimoto T, Nakayama T (2004) A new prenylated flavonoid from propolis collected in Okinawa, Japan. Biosci Biotechnol Biochem 68:260PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Jayasinghe L, Rupasinghe GK, Hara N, Fujimoto Y (2006) Geranylated phenolic constituents from the fruits of Artocarpus nobilis. Phytochemistry 67:1353PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Chen CN, Weng MS, Wu CL, Lin JK (2004) Comparison of radical scavenging activity, cytotoxic effects and apoptosis induction in human melanoma cells by Taiwanese propolis from different sources. Evid Based Complement Alternat Med 1:175PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Raghukumar R, Vali L, Watson D, Fearnley J, Seidel V (2010) Antimethicillin-resistant Staphylococcus aureus (MRSA) activity of “Pacific propolis” and isolated prenylflavanones. Phytother Res 24:1181PubMedPubMedCentralGoogle Scholar
  82. 82.
    Zakaria I, Ahmat N, Jaafar FM, Widyawaruyanti A (2012) Flavonoids with antiplasmodial and cytotoxic activities of Macaranga triloba. Fitoterapia 83:968PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Salvatore MJ, King AB, Graham AC, Onishi HR, Bartizal KF, Abruzzo GK, Gill CJ, Ramjit HG, Pitzenberger SM, Witherup KM (1998) Antibacterial activity of lonchocarpol A. J Nat Prod 61:640PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Khaomek P, Ichino C, Ishiyama A, Sekiguchi H, Namatame M, Ruangrungsi N, Saifah E, Kiyohara H, Otoguro K, Omura S, Yamada H (2008) In vitro antimalarial activity of prenylated flavonoids from Erythrina fusca. J Nat Med 62:217PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Chan YY, Li CH, Shen YC, Wu TS (2010) Anti-inflammatory principles from the stem and root barks of Citrus medica. Chem Pharm Bull 58:61PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, Kim SG, Kim SC (2008) Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-κB-dependent iNOS and proinflammatory cytokines production. Br J Pharmacol 154:165PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kong LD, Zhang Y, Pan X, Tan RX, Cheng CHK (2000) Inhibition of xanthine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Cell Mol Life Sci 57:500PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Mersereau JE, Levy N, Staub RE, Baggett S, Zogovic T, Chow S, Ricke WA, Tagliaferri M, Cohen I, Bjeldanes LF, Leitman DC (2008) Liquiritigenin is a plant-derived highly selective estrogen receptor β agonist. Mol Cell Endocrinol 283:49PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Chiari E, de Oliveira AB, Raslan DS, Mesquita AAL, Tavares KG (1991) Screening in vitro of natural products against blood forms of Trypanosoma cruzi. Trans R Soc Trop Med Hyg 85:372PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Fokialakis N, Kalpoutzakis E, Tekwani BL, Skaltsounis AL, Duke SO (2006) Antileishmanial activity of natural diterpenes from Cistus sp. and semisynthetic derivatives thereof. Biol Pharm Bull 29:1775PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Banskota AH, Tezuka Y, Adnyana IK, Ishii E, Midorikawa K, Matsushige K, Kadota S (2001) Hepatoprotective and anti-Helicobacter pylori activities of constituents from Brazilian propolis. Phytomedicine 8:16PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Woo KW, Choi SU, Park JC, Lee KR (2011) A new lignan glycoside from Juniperus rigida. Arch Pharm Res 34:2043PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Smith EC, Williamson EM, Wareham N, Kaatz GW, Gibbons S (2007) Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry 68:210PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Tanabe H, Yasui T, Kotani H, Nagatsu A, Makishima M, Amagaya S, Inoue M (2014) Retinoic acid receptor agonist activity of naturally occurring diterpenes. Bioorg Med Chem 22:3204PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Suh SJ, Kwak CH, Chung TW, Park SJ, Cheeeei M, Park SS, Seo CS, Son JK, Chang YC, Park YG, Lee YC (2012) Pimaric acid from Aralia cordata has an inhibitory effect on TNF-α-induced MMP-9 production and HASMC migration via down-regulated NF-κB and AP-1. Chem Biol Interact 199:112PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Ahmad S, Sukari MA, Ismail N, Ismail IS, Abdul AB, Abu Bakar MF, Kifli N, Ee GC (2015) Phytochemicals from Mangifera pajang Kosterm and their biological activities. BMC Complement Altern Med 15:83PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Li F, Awale S, Tezuka Y, Kadota S (2009) Cytotoxic constituents of propolis from Myanmar and their structure–activity relationship. Biol Pharm Bull 32:2075PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Cháirez-Ramírez MH, Moreno-Jiménez MR, González-Laredo RF, Gallegos-Infante JA, Rocha-Guzmán NE (2016) Lupane-type triterpenes and their anti-cancer activities against most common malignant tumors: a review. EXCLI J 15:758PubMedPubMedCentralGoogle Scholar
  99. 99.
    Schwiebs A, Radeke HH (2018) Immunopharmacological activity of betulin in inflammation-associated carcinogenesis. Anticancer Agents Med Chem 18:645PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Alakurtti S, Mäkelä T, Koskimies S, Yli-Kauhaluoma J (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 29:1PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Romero-Estrada A, Maldonado-Magana A, Gonzalez-Christen J, Bahena SM, Garduno-Ramirez ML, Rodriguez-Lopez V, Alvarez L (2016) Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes isolated from the Mexican copal resin of Bursera copallifera. BMC Complement Altern Med 16:422PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhang J, Yamada S, Ogihara E, Kurita M, Banno N, Qu W, Feng F, Akihisa T (2016) Biological activities of triterpenoids and phenolic compounds from Myrica cerifera bark. Chem Biodivers 13:1601PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Juan ME, Wenzel U, Daniel H, Planas JM (2008) Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells. Mol Nutr Food Res 52:595PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Kontogianni VG, Tsoumani ME, Kellici TF, Mavromoustakos T, Gerothanassis IP, Tselepis AD, Tzakos AG (2016) Deconvoluting the dual antiplatelet activity of a plant extract. J Agric Food Chem 64:4511PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Paniagua-Pérez R, Flores-Mondragón G, Reyes-Legorreta C, Herrera-López B, Cervantes-Hernández I, Madrigal-Santillán O, Morales-González JA, Álvarez-González I, Madrigal-Bujaidar E (2016) Evaluation of the anti-inflammatory capacity of β-sitosterol in rodent assays. Afr J Tradit Complement Altern Med 14:123PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Villaseñor IM, Angelada J, Canlas AP, Echegoyen D (2002) Bioactivity studies on β-sitosterol and its glucoside. Phytother Res 16:417PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Park C, Moon DO, Rhu CH, Choi BT, Lee WH, Kim GY, Choi YH (2007) Beta-sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol Pharm Bull 30:1317PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Ivorra MD, D’Ocon MP, Paya M, Villar A (1988) Antihyperglycemic and insulin-releasing effects of β-sitosterol 3-β-d-glucoside and its aglycone, β-sitosterol. Arch Int Pharmacodyn Ther 296:224PubMedGoogle Scholar
  109. 109.
    Fraile L, Crisci E, Córdoba L, Navarro MA, Osada J, Montoya M (2012) Immunomodulatory properties of β-sitosterol in pig immune responses. Int Immunopharmacol 13:316PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Malini T, Vanithakumari G (1991) Antifertility effects of β-sitosterol in male albino rats. J Ethnopharmacol 35:149PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Vivancos M, Moreno JJ (2005) β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 39:91PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Kiprono PC, Kaberia F, Keriko JM, Karanja JN (2000) The in vitro anti-fungal and anti-bacterial activities of β-sitosterol from Senecio lyratus (Asteraceae). Z Naturforsch C 55:485PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Akhtar MN, Lam KW, Abas F, Ahmad S, Shah SAA, Choudhary MI, Lajis NH (2011) New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights. Bioorg Med Chem Lett 21:4097PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Knodler M, Conrad J, Wenzig EM, Bauer R, Lacorn M, Beifuss U, Carle R, Schieber A (2008) Anti-inflammatory 5-(11′Z-heptadecenyl)-and 5-(8′Z,11′Z-heptadecadienyl)-resorcinols from mango (Mangifera indica L.) peels. Phytochemistry 69:988PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Zeng L, Gu ZM, Fang XP, McLaughlin JL (1994) Kneglomeratanol, kneglomeratanones A and B, and related bioactive compounds from Knema glomerata. J Nat Prod 57:376PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Tanaka A, Arai Y, Kim SN, Ham J, Usuki T (2011) Synthesis and biological evaluation of bilobol and adipostatin A. J Asian Nat Prod Res 13:290PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Chen LP, Zhao F, Wang Y, Zhao LL, Li QP, Liu HW (2011) Antitumor effect of resorcinol derivatives from the roots of Ardisia brevicaulis by inducing apoptosis. J Asian Nat Prod Res 13:734PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Barr JR, Murty VS, Yamaguchi K, Singh S, Smith DH, Hecht SM (1988) 5-Alkylresorcinols from Hakea amplexicaulis that cleave DNA. Chem Res Toxicol 1:204PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Iwatsuki K, Akihisa T, Tokuda H, Ukiya M, Higashihara H, Mukainaka T, Iizuka M, Hayashi Y, Kimura Y, Nishino H (2003) Sterol ferulates, sterols, and 5-alk(en)ylresorcinols from wheat, rye, and corn bran oils and their inhibitory effects on Epstein-Barr virus activation. J Agric Food Chem 51:6683PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Liu L, Winter KM, Stevenson L, Morris C, Leach DN (2012) Wheat bran lipophilic compounds with in vitro anticancer effects. Food Chem 130:156CrossRefGoogle Scholar
  121. 121.
    Manda VK, Dale OR, Awortwe C, Ali Z, Khan IA, Walker LA, Khan SI (2014) Evaluation of drug interaction potential of Labisia pumila (Kacip Fatimah) and its constituents. Front Pharmacol 5:178PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Suzuki Y, Esumi Y, Hyakutake H, Kono Y, Sakurai A (1996) Isolation of 5-(8′Z-heptadecenyl)-resorcinol from etiolated rice seedlings as an antifungal agent. Phytochemistry 41:1485CrossRefGoogle Scholar
  123. 123.
    Cao S, Schilling JK, Randrianasolo A, Andriantsiferana R, Rasamison VE, Kingston DGI (2004) New cytotoxic alkyl phloroglucinols from Protorhus thouvenotii. Planta Med 70:683PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kong P, Chen G, Jiang A, Wang Y, Song C, Zhuang J, Xi C, Wang G, Ji Y, Yan J (2016) Sesamin inhibits IL-1β-stimulated inflammatory response in human osteoarthritis chondrocytes by activating Nrf2 signaling pathway. Oncotarget 7:83720PubMedPubMedCentralGoogle Scholar
  125. 125.
    Li L, Piao H, Zheng M, Jin Z, Zhao L, Yan G (2016) Sesamin attenuates allergic airway inflammation through the suppression of nuclear factor-kappa B activation. Exp Ther Med 12:4175PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Rao YK, Fang SH, Tzeng YM (2006) Anti-inflammatory activities of constituents isolated from Phyllanthus polyphyllus. J Ethnopharmacol 103:181PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218CrossRefGoogle Scholar
  128. 128.
    Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480–481:243PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Vidavalur R, Otani H, Singal PK, Maulik N (2006) Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 11:217PubMedPubMedCentralGoogle Scholar
  130. 130.
    Bird JK, Raederstorff D, Weber P, Steinert RE (2017) Cardiovascular and anti-obesity effects of resveratrol mediated through the gut microbiota. Adv Nutr 8:83CrossRefGoogle Scholar
  131. 131.
    Beutler JA, Shoemaker RH, Johnson T, Boyd MR (1998) Cytotoxic geranyl stilbenes from Macaranga schweinfurthii. J Nat Prod 61:1509PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Turbyville TJ, Gursel DB, Tuskan RG, Walrath JC, Lipschultz CA, Lockett SJ, Wiemer DF, Beutler JA, Reilly KM (2010) Schweinfurthin A selectively inhibits proliferation and Rho signaling in glioma and neurofibromatosis type 1 tumor cells in a NF1-GRD–dependent manner. Mol Cancer Ther 9:1234PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Nolte O (2014) Antimicrobial resistance in the 21st century: a multifaceted challenge. Protein Pept Lett 21:330PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Hegazi AG, El Hady FKA (2001) Egyptian propolis: 1. Antimicrobial activity and chemical composition of Upper Egypt propolis. Z Naturforsch C 56:82PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Seidel V, Peyfoon E, Watson DG, Fearnley J (2008) Comparative study of the antibacterial activity of propolis from different geographical and climatic zones. Phytother Res 22:1256PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Grange JM, Davey RW (1990) Antibacterial properties of propolis (bee glue). J R Soc Med 83:159PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Velikova M, Bankova V, Sorkun K, Houcine S, Tsvetkova I, Kujumgiev A (2000) Propolis from the Mediterranean region: chemical composition and antimicrobial activity. Z Naturforsch C 55:790PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Kouidhi B, Zmantar T, Bakhrouf A (2010) Anti-cariogenic and anti-biofilms activity of Tunisian propolis extract and its potential protective effect against cancer cells proliferation. Anaerobe 16:566PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Al-Waili N, Al-Ghamdi A, Ansari MJ, Al-Attal Y, Salom K (2012) Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli, and Candida albicans isolates in single and polymicrobial cultures. Int J Med Sci 9:793PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    El-Guendouz S, Aazza S, Lyoussi B, Bankova V, Lourenço JP, Costa AM, Mariano JF, Miguel MG, Faleiro ML (2016) Impact of biohybrid magnetite nanoparticles and Moroccan propolis on adherence of methicillin resistant strains of Staphylococcus aureus. Molecules 21:1208PubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hegazi AG, El Hady FKA, Shalaby HA (2007) Inhibitory effect of Egyptian propolis on Fasciola gigantica eggs with reference to its effect on Clostridium oedematiens and correlation to chemical composition. Pak J Biol Sci 10:3295PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Aly SS, Elewa NA (2007) The effect of Egyptian honeybee propolis on the growth of Aspergillus versicolor and sterigmatocystin biosynthesis in Ras cheese. J Dairy Res 74:74PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Haile K, Dekebo A (2013) Chemical composition and antimicrobial activity of Haramaya propolis (bee glue), Ethiopia. IJPSR 4:734Google Scholar
  144. 144.
    Ghaly MF, Ezzat SM, Sarhan MM (1998) Use of propolis and ultragriseofulvin to inhibit aflatoxigenic fungi. Folia Microbiol 43:156CrossRefGoogle Scholar
  145. 145.
    Gomaa OM, Gaweesh AS (2013) Variation in adhesion and germ tube formation of oral Candida using Egyptian propolis. Can J Microbiol 59:197PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Vanaerschot M, Huijben S, Van den Broeck F, Dujardin JC (2014) Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol Rev 38:41PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Hegazi AG, El Hady FKA, Shalaby HA (2007) An in vitro effect of propolis on adult worms of Fasciola gigantica. Vet Parasitol 144:279PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Soufy H, El-Beih NM, Nasr SM, Abd El-Aziz TH, Khalil FAM, Ahmed YF, Abou Zeina HAA (2017) Effect of Egyptian propolis on cryptosporidiosis in immunosuppressed rats with special emphasis on oocysts shedding, leukogram, protein profile and ileum histopathology. Asian Pac J Trop Med 10:253PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Mahmoud TY, Rizk SM, Maghraby AS, Shaheen AA (2014) Propolis enhances the effectiveness of praziquantel in experimental schistosomiasis: biochemical and histopathological study. Parasitol Res 113:4513PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Bhatelia K, Singh K, Singh R (2014) TLRs: linking inflammation and breast cancer. Cell Signal 26:2350PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V, Pariggiano I, Bianchi R, Crisci M, D’Acierno L, Giordano R, Di Palma G, Conte M, Golino P, Russo MG, Calabrò R, Calabrò P (2014) Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep 16:435PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Murdoch JR, Lloyd CM (2010) Chronic inflammation and asthma. Mutat Res 690:24PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    El-Aidy W, Ebeid A, Sallam A, Muhammad I, Abbas A, Kamal M, Sohrab S (2015) Evaluation of propolis, honey, and royal jelly in amelioration of peripheral blood leukocytes and lung inflammation in mouse conalbumin-induced asthma model. Saudi J Biol Sci 22:780PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Lipworth BJ (2005) Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet 365:167PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Wu Z, Zhao Y, Zhao B (2010) Superoxide anion, uncoupling proteins and Alzheimer’s disease. J Clin Biochem Nutr 46:187PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Pashkow FJ (2011) Oxidative stress and inflammation in heart disease: do antioxidants have a role in treatment and/or prevention? Int J Inflam 2011:514623PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Saisho Y (2014) Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int J Mol Sci 15:18381PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Sime D, Atlabachew M, Redi-Abshiro M, Zewde T (2015) Total phenols and antioxidant activities of natural honeys and propolis collected from different geographical regions of Ethiopia. Bull Chem Soc Ethiopia 29:163CrossRefGoogle Scholar
  161. 161.
    Narimane S, Demircan E, Salah A, Ozcelik BÖ, Salah R (2017) Correlation between antioxidant activity and phenolic acids profile and content of Algerian propolis: influence of solvent. Pak J Pharm Sci 30:1417PubMedPubMedCentralGoogle Scholar
  162. 162.
    El-Guendouz S, Al-Waili N, Aazza S, Elamine Y, Zizi S, Al-Waili T, Al-Waili A, Lyoussi B (2017) Antioxidant and diuretic activity of co-administration of Capparis spinosa honey and propolis in comparison to furosemide. Asian Pac J Trop Med 10:974PubMedCrossRefGoogle Scholar
  163. 163.
    Kurek-Górecka A, Rzepecka-Stojko A, Górecki M, Stojko J, Sosada M, Swierczek-Zieba G (2013) Structure and antioxidant activity of polyphenols derived from propolis. Molecules 19:78PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Alyane M, Kebsa LB, Boussenane HN, Rouibah H, Lahouel M (2008) Cardioprotective effects and mechanism of action of polyphenols extracted from propolis against doxorubicin toxicity. Pak J Pharm Sci 21:201PubMedPubMedCentralGoogle Scholar
  165. 165.
    Khayyal MT, El-Hazek RM, El-Ghazaly MA (2015) Propolis aqueous extract preserves functional integrity of murine intestinal mucosa after exposure to ionizing radiation. Environ Toxicol Pharmacol 40:901PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Lahouel M, Boutabet K, Kebsa W, Alyane M (2010) Polyphenolic fractions of Algerian propolis reverses doxorubicin induced acute renal oxidative stress. Afr J Pharm Pharmacol 4:712Google Scholar
  167. 167.
    Boutabet K, Kebsa W, Alyane M, Lahouel M (2011) Polyphenolic fraction of Algerian propolis protects rat kidney against acute oxidative stress induced by doxorubicin. Indian J Nephrol 21:101PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Wided K, Hassiba R, Mesbah L (2014) Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria. Pak J Pharm Sci 27:1891PubMedPubMedCentralGoogle Scholar
  169. 169.
    Rizk SM, Zaki HF, Mina MA (2014) Propolis attenuates doxorubicin-induced testicular toxicity in rats. Food Chem Toxicol 67:176PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    El-Sharkawy EE, Kames AO, Sayed SM, Nisr NA, Wahba NM, Elsherif WM, Nafady AM, Abdel-Hafeez MM, Aamer AA (2014) The ameliorative effect of propolis against methoxychlor induced ovarian toxicity in rat. Exp Toxicol Pathol 66:415PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Tohamy AA, Abdella EM, Ahmed RR, Ahmed YK (2014) Assessment of anti-mutagenic, anti-histopathologic and antioxidant capacities of Egyptian bee pollen and propolis extracts. Cytotechnology 66:283PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Alm-Eldeen AA, Basyony MA, Elfiky NK, Ghalwash MM (2017) Effect of the Egyptian propolis on the hepatic antioxidant defense and pro-apoptotic p53 and anti-apoptotic bcl2 expressions in aflatoxin B1 treated male mice. Biomed Pharmacother 87:247PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    El Menyiy N, Al Waili N, Bakour M, Al-Waili H, Lyoussi B (2016) Protective effect of propolis in proteinuria, crystaluria, nephrotoxicity and hepatotoxicity induced by ethylene glycol ingestion. Arch Med Res 47:526PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Garoui EM, Troudi A, Fetoui H, Soudani N, Boudawara T, Zeghal N (2012) Propolis attenuates cobalt induced-nephrotoxicity in adult rats and their progeny. Exp Toxicol Pathol 64:837CrossRefGoogle Scholar
  175. 175.
    Babatunde IR, Abdulbasit A, Oladayo MI, Olasile OI, Olamide FR, Gbolahan BW (2015) Hepatoprotective and pancreatoprotective properties of the ethanolic extract of Nigerian propolis. J Intercult Ethnopharmacol 4:102PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    El Hady FKA, Hegazi AG (2002) Egyptian propolis: 2. Chemical composition, antiviral and antimicrobial activities of East Nile Delta propolis. Z Naturforsch C 57:386CrossRefGoogle Scholar
  177. 177.
    Hegazi AG, Farghaly AA, El Hady FKA (2001) Antiviral activity and chemical composition of European and Egyptian propolis. In: 37th International Apiceutical Congress 2001, Durban, South Africa. ISBN: 0-620-27768-8Google Scholar
  178. 178.
    El Hady FKA, Hegazi AG, Wollenweber E (2007) Effect of Egyptian propolis on the susceptibility of LDL to oxidative modification and its antiviral activity with special emphasis on chemical composition. Z Naturforsch C 62:645CrossRefGoogle Scholar
  179. 179.
    Abd El Rahman A (2009) Antagonism of Aeromonas hydrophilia by propolis and its effect on the performance of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immun 27:454CrossRefGoogle Scholar
  180. 180.
    Sayed A, Abou El-Ella G, Wahba N, El Nisr N, Raddad K, Abd El Rahman M, Abd El Hafeez M, Abd El Fattah Aamer A (2009) Immune defense of rats immunized with fennel honey, propolis, and bee venom against induced staphylococcal infection. J Med Food 12:569PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Nassar SA, Mohamed AH, Soufy H, Nasr SM, Mahran KM (2011) Immunostimulant effect of Egyptian propolis in rabbits. Scientific World J 2012:1CrossRefGoogle Scholar
  182. 182.
    Nassar SA, Mohamed AH, Soufy H, Nasr SM (2013) Protective effect of Egyptian propolis against rabbit pasteurellosis. Biomed Res Int 2013:163724PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Zedan H, Hofny ERM, Ismail SA (2009) Propolis as an alternative treatment for cutaneous warts. Int J Dermatol 48:1246PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Rouibah H, Mesbah L, Kebsa W, Zihlif M, Ahram M, Aburmeleih B, Mostafa I, El Amir H (2018) Algerian propolis potentiates doxorubicin mediated anticancer effect against human pancreatic PANC-1 cancer cell line through cell cycle arrest, apoptosis induction and P-glycoprotein inhibition. Anticancer Agents Med Chem 18:375PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Salim E, Abd El-Magid A, Farara K, Maria D (2015) Antitumoral and antioxidant potential of Egyptian propolis against the PC3 prostate cancer cell line. Asian Pac J Cancer Prev 16:7641PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Badr M, Edrees N, Abdallah A, El-Deen N, Neamat-Allah A, Ismail H (2011) Anti-tumor effects of Egyptian propolis on Ehrlich ascites carcinoma. Vet Ital 47:341PubMedPubMedCentralGoogle Scholar
  188. 188.
    El-Khawaga O, Salem T, Elshal M (2003) Protective role of Egyptian propolis against tumor in mice. Clin Chim Acta 338:11PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Popova M, Lyoussi B, Aazza S, Antunes D, Bankova V, Miguel G (2015) Antioxidant and α-glucosidase inhibitory properties and chemical profiles of Moroccan propolis. Nat Prod Commun 10:1961PubMedPubMedCentralGoogle Scholar
  190. 190.
    Zingue S, Nde CBM, Michel T, Ndinteh DT, Tchatchou J, Adamou M, Fernandez X, Fohouo FT, Clyne C, Njamen D (2017) Ethanol-extracted Cameroonian propolis exerts estrogenic effects and alleviates hot flushes in ovariectomized Wistar rats. BMC Complement Altern Med 17:65PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Oladayo MI (2016) Nigerian propolis improves blood glucose, glycated hemoglobin A1C, very low-density lipoprotein, and high-density lipoprotein levels in rat models of diabetes. J Intercult Ethnopharmacol 5:233PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Klopper RR, Gautier L, Chatelain C, Smith GF, Spichiger R (2007) Floristics of the angiosperm flora of sub-Saharan Africa: an analysis of the African plant checklist and database. Taxon 56:201Google Scholar
  193. 193.
    Chen CN, Hsiao C-J, Lee S-S, Guh J-H, Chiang P-C, Huang C-C, Huang W-J (2012) Chemical modification and anticancer effect of prenylated flavanones from Taiwanese propolis. Nat Prod Res 26:116PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Natural Products Drug Discovery Research Group, Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK

Personalised recommendations