Advertisement

Veins: The Open Source Vehicular Network Simulation Framework

  • Christoph SommerEmail author
  • David EckhoffEmail author
  • Alexander Brummer
  • Dominik S. Buse
  • Florian Hagenauer
  • Stefan Joerer
  • Michele Segata
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

We describe Veins, an open-source model library for (and a toolbox around) OMNeT++, which supports researchers conducting simulations involving communicating road vehicles—either as the main focus of a study or as a component. Veins already includes a full stack of simulation models for investigating cars and infrastructure communicating via IEEE 802.11 based technologies in simulations of Vehicular Ad Hoc Networks (VANETs) and Intelligent Transportation Systems (ITS). Thanks to its modularity, though, it can equally well be used as the basis for modeling other mobile nodes (like bikes or pedestrians) and communication technologies (from mobile broadband to visible light). Serving as the basis for hundreds of publications and university courses since its beginnings in the year 2006, today Veins is both one of the most mature and established tools in this domain.

In this chapter, we give a brief overview of recent developments regarding the architecture, simulation models, and supporting code of Veins; we also present two practical use cases, discuss two extensions, and conclude with a brief discussion of using Veins as a virtual appliance. The framework, code examples, and tutorial simulations can be downloaded from http://veins.car2x.org.

Notes

Acknowledgements

The authors are grateful to the community surrounding Veins, the many people who keep contributing their time and smarts to its continuous improvement. We particularly acknowledge the research labs at Univ. Paderborn, Univ. Erlangen-Nuremberg, Univ. Trento, TUMCREATE Singapore, Univ. Sydney, UCLA, Univ. Innsbruck, Univ. Luxembourg, TH Ingolstadt, Fraunhofer, TU Berlin, Carnegie Mellon University, and the German Aerospace Center.

The author D. Eckhoff was financially supported by the Singapore National Research Foundation under its Campus for Research Excellence And Technological Enterprise (CREATE) programme.

References

  1. 1.
    Ali, A., Garcia, G., Martinet, P.: The flatbed platoon towing model for safe and dense platooning on highways. IEEE Intell. Transp. Syst. Mag. 7(1), 58–68 (2015).  https://doi.org/10.1109/MITS.2014.2328670 CrossRefGoogle Scholar
  2. 2.
    Aramrattana, M., Larsson, T., Jansson, J., Nåbo, A.: A simulation framework for cooperative intelligent transport systems testing and evaluation. Transport. Res. F: Traffic Psychol. Behav. (2017). https://doi.org/10.1016/j.trf.2017.08.004 CrossRefGoogle Scholar
  3. 3.
    Bedogni, L., Bononi, L., Di Felice, M., D’Elia, A., Mock, R., Morandi, F., Rondelli, S., Salmon Cinotti, T., Vergari, F.: An integrated simulation framework to model electric vehicles operations and services. IEEE Trans. Veh. Technol. 65(8) (2015).  https://doi.org/10.1109/TVT.2015.2453125 CrossRefGoogle Scholar
  4. 4.
    Bedogni, L., Gramaglia, M., Vesco, A., Fiore, M., Härri, J., Ferrero, F.: The Bologna ringway dataset: improving road network conversion in SUMO and validating urban mobility via navigation services. IEEE Trans. Veh. Technol. 64(12), 5464–5476 (2015).  https://doi.org/10.1109/TVT.2015.2475608 CrossRefGoogle Scholar
  5. 5.
    Berndt, H., Wender, S., Dietmayer, K.: Driver braking behavior during intersection approaches and implications for warning strategies for driver assistant systems. In: IEEE Intelligent Vehicles Symposium (IV’07), pp. 245–251. IEEE, Istanbul (2007).  https://doi.org/10.1109/IVS.2007.4290122
  6. 6.
    Bieker, L., Krajzewicz, D., Morra, A.P., Michelacci, C., Cartolano, F.: Traffic simulation for all: a real world traffic scenario from the city of Bologna. In: SUMO User Conference 2014, pp. 19–26. Deutsches Zentrum für Luft - und Raumfahrt e.V., Berlin (2014). https://doi.org/10.1007/978-3-319-15024-6_4 CrossRefGoogle Scholar
  7. 7.
    Bonnet, C., Fritz, H.: Fuel consumption reduction in a platoon: experimental results with two electronically coupled trucks at close spacing. In: Future Transportation Technology Conference. SAE, Costa Mesa (2001)Google Scholar
  8. 8.
    Brummer, A., German, R., Djanatliev, A.: On the necessity of three-dimensional considerations in vehicular network simulation. In: 14th IEEE/IFIP Conference on Wireless on demand Network Systems and Services (WONS 2018), Isola 2000, pp. 75–82. IEEE, Isola (2018).  https://doi.org/10.23919/WONS.2018.8311665
  9. 9.
    Codecá, L., Härri, J.: Towards multimodal mobility simulation of C-ITS: the monaco SUMO traffic scenario. In: 9th IEEE Vehicular Networking Conference (VNC 2017), pp. 97–100. IEEE, Torino (2017).  https://doi.org/10.1109/VNC.2017.8275627
  10. 10.
    Codeca, L., Frank, R., Engel, T.: Luxembourg SUMO traffic (LuST) scenario: 24 hours of mobility for vehicular networking research. In: 7th IEEE Vehicular Networking Conference (VNC 2015). IEEE, Kyoto (2015).  https://doi.org/10.1109/VNC.2015.7385539
  11. 11.
    Dávila, A., Nombela, M.: Sartre - safe road trains for the environment reducing fuel consumption through lower aerodynamic drag coefficient. In: 25th SAE Brasil International Congress and Display. SAE Brasil, São Paulo (2011)Google Scholar
  12. 12.
    Eckhoff, D., Sommer, C.: A multi-channel IEEE 1609.4 and 802.11p EDCA model for the Veins framework. In: 5th ACM/ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools 2012): 5th ACM/ICST International Workshop on OMNeT++ (OMNeT++ 2012), Poster Session. ACM, Desenzano (2012)Google Scholar
  13. 13.
    Eckhoff, D., Sommer, C.: Simulative performance evaluation of vehicular networks. In: Chen, W. (ed.) Vehicular Communications and Networks: Architectures, Protocols, Operation and Deployment, pp. 255–274. Woodhead Publishing, Sawston (2015). https://doi.org/10.1016/B978-1-78242-211-2.00012-X CrossRefGoogle Scholar
  14. 14.
    Eckhoff, D., Sommer, C.: Readjusting the privacy goals in vehicular ad-hoc networks: a safety-preserving solution using non-overlapping time-slotted pseudonym pools. Elsevier Comput. Commun. 122, 118–128 (2018). https://doi.org/10.1016/j.comcom.2018.03.006 CrossRefGoogle Scholar
  15. 15.
    Eckhoff, D., Sommer, C., Dressler, F.: On the necessity of accurate IEEE 802.11p models for IVC protocol simulation. In: 75th IEEE Vehicular Technology Conference (VTC2012-Spring), pp. 1–5. IEEE, Yokohama (2012).  https://doi.org/10.1109/VETECS.2012.6240064
  16. 16.
    Eckhoff, D., Halmos, B., German, R.: Potentials and limitations of green light optimal speed advisory systems. In: 5th IEEE Vehicular Networking Conference (VNC 2013), pp. 103–110. IEEE, Boston (2013).  https://doi.org/10.1109/VNC.2013.6737596
  17. 17.
    Eckhoff, D., Sofra, N., German, R.: A performance study of cooperative awareness in ETSI ITS G5 and IEEE WAVE. In: 10th IEEE/IFIP Conference on Wireless on demand Network Systems and Services (WONS 2013), pp. 196–200. IEEE, Banff (2013).  https://doi.org/10.1109/WONS.2013.6578347
  18. 18.
    Eckhoff, D., Brummer, A., Sommer, C.: On the impact of antenna patterns on VANET simulation. In: 8th IEEE Vehicular Networking Conference (VNC 2016), pp. 17–20. IEEE, Columbus (2016).  https://doi.org/10.1109/VNC.2016.7835925
  19. 19.
    Emara, K.: Poster: PREXT: privacy extension for veins VANET simulator. In: 8th IEEE Vehicular Networking Conference (VNC 2016), Poster Session. IEEE, Columbus (2016).  https://doi.org/10.1109/VNC.2016.7835979
  20. 20.
    Giordano, G., Segata, M., Blanchini, F., Lo Cigno, R.: A joint network/control design for cooperative automatic driving. In: 9th IEEE Vehicular Networking Conference (VNC 2017), pp. 167–174. IEEE, Torino (2017)Google Scholar
  21. 21.
    Hagenauer, F., Dressler, F., Sommer, C.: A simulator for heterogeneous vehicular networks. In: 6th IEEE Vehicular Networking Conference (VNC 2014), Poster Session, pp. 185–186. IEEE, Paderborn (2014).  https://doi.org/10.1109/VNC.2014.7013339
  22. 22.
    Hassan, M.I., Vu, H.L., Sakurai, T.: Performance analysis of the IEEE 802.11 MAC protocol for DSRC safety applications. IEEE Trans. Veh. Technol. 60(8), 3882–3896 (2011).  https://doi.org/10.1109/TVT.2011.2162755 CrossRefGoogle Scholar
  23. 23.
    Heinovski, J., Klingler, F., Dressler, F., Sommer, C.: A simulative analysis of the performance of IEEE 802.11p and ARIB STD-T109. Elsevier Comput. Commun. 122, 84–92 (2018). https://doi.org/10.1016/j.comcom.2018.03.016 CrossRefGoogle Scholar
  24. 24.
    IEEE: IEEE standard for Wireless Access in Vehicular Environments (WAVE) - multi-channel operation. Std 1609.4-2016. IEEE, Piscataway (2016)Google Scholar
  25. 25.
    IEEE: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Std 802.11-2016. IEEE, Piscataway (2016)Google Scholar
  26. 26.
    Joerer, S.: Improving intersection safety with inter-vehicle communication. Phd thesis (dissertation), University of Innsbruck (2016)Google Scholar
  27. 27.
    Joerer, S., Dressler, F., Sommer, C.: Comparing apples and oranges? Trends in IVC simulations. In: 9th ACM International Workshop on Vehicular Internetworking (VANET 2012), pp. 27–32. ACM, Low Wood Bay (2012). https://doi.org/10.1145/2307888.2307895
  28. 28.
    Joerer, S., Segata, M., Bloessl, B., Lo Cigno, R., Sommer, C., Dressler, F.: To crash or not to crash: estimating its likelihood and potentials of Beacon-based IVC systems. In: 4th IEEE Vehicular Networking Conference (VNC 2012), pp. 25–32. IEEE, Seoul (2012).  https://doi.org/10.1109/VNC.2012.6407441
  29. 29.
    Joerer, S., Segata, M., Bloessl, B., Lo Cigno, R., Sommer, C., Dressler, F.: A vehicular networking perspective on estimating vehicle collision probability at intersections. IEEE Trans. Veh. Technol. 63(4), 1802–1812 (2014).  https://doi.org/10.1109/TVT.2013.2287343 CrossRefGoogle Scholar
  30. 30.
    Jootel, P.S.: SAfe Road TRains for the Environment. Final project report, SARTRE project (2012)Google Scholar
  31. 31.
    Kornek, D., Schack, M., Slottke, E., Klemp, O., Rolfes, I., Kürner, T.: Effects of antenna characteristics and placements on a vehicle-to-vehicle channel scenario. In: IEEE International Conference on Communications (ICC 2010), Workshops. IEEE, Capetown (2010).  https://doi.org/10.1109/ICCW.2010.5503935
  32. 32.
    Krauß, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of traffic flow. Phys. Rev. E 55(5), 5597–5602 (1997).  https://doi.org/10.1103/PhysRevE.55.5597 CrossRefGoogle Scholar
  33. 33.
    Kunze, R., Ramakers, R., Henning, K., Jeschke, S.: Organization and operation of electronically coupled truck platoons on German motorways. In: Automation, Communication and Cybernetics in Science and Engineering 2009/2010, pp. 427–439. Springer, Berlin (2011)Google Scholar
  34. 34.
    Kwoczek, A., Raida, Z., Láčík, J., Pokorný, M., Puskely, J., Vágner, P.: Influence of car panorama glass roofs on Car2car communication. In: 3rd IEEE Vehicular Networking Conference (VNC 2011), Poster Session, pp. 246–251. IEEE, Amsterdam (2011).  https://doi.org/10.1109/VNC.2011.6117107
  35. 35.
    Larson, J., Liang, K.Y., Johansson, K.H.: A distributed framework for coordinated heavy-duty vehicle platooning. IEEE Trans. Intell. Transp. Syst. 16(1), 419–429 (2015).  https://doi.org/10.1109/TITS.2014.2320133 CrossRefGoogle Scholar
  36. 36.
    Leonor, N.R., Caldeirinha, R.F.S., Sánchez, M.G., Fernandes, T.R.: A three-dimensional directive antenna pattern interpolation method. IEEE Antennas Wirel. Propag. Lett. 15, 881–884 (2016).  https://doi.org/10.1109/LAWP.2015.2478962 CrossRefGoogle Scholar
  37. 37.
    Memedi, A., Tsai, H.M., Dressler, F.: Impact of realistic light radiation pattern on vehicular visible light communication. In: IEEE Global Telecommunications Conference (GLOBECOM 2017). IEEE, Singapore (2017).  https://doi.org/10.1109/GLOCOM.2017.8253979
  38. 38.
    Milanés, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H., Nakamura, M.: Cooperative adaptive cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst. 15(1), 296–305 (2014).  https://doi.org/10.1109/TITS.2013.2278494 CrossRefGoogle Scholar
  39. 39.
    Nardini, G., Virdis, A., Stea, G.: Modeling X2 backhauling for LTE-advanced and assessing its effect on CoMP coordinated scheduling. In: 1st International Workshop on Link- and System Level Simulations (IWSLS 2016). IEEE, Vienna (2016).  https://doi.org/10.1109/IWSLS.2016.7801582
  40. 40.
    Ploeg, J., Scheepers, B., van Nunen, E., van de Wouw, N., Nijmeijer, H.: Design and experimental evaluation of cooperative adaptive cruise control. In: IEEE International Conference on Intelligent Transportation Systems (ITSC 2011), pp. 260–265. IEEE, Washington (2011).  https://doi.org/10.1109/ITSC.2011.6082981
  41. 41.
    Rajamani, R.: Vehicle Dynamics and Control, 2nd edn. Springer, Cham (2012)CrossRefGoogle Scholar
  42. 42.
    Rajamani, R., Tan, H.S., Law, B.K., Zhang, W.B.: Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Trans. Control Syst. Technol. 8(4), 695–708 (2000). https://doi.org/10.1109/87.852914 CrossRefGoogle Scholar
  43. 43.
    Riebl, R., Günther, H.J., Facchi, C., Wolf, L.: Artery - extending veins for VANET applications. In: 4th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS 2015). IEEE, Budapest (2015).  https://doi.org/10.1109/MTITS.2015.7223293
  44. 44.
    Riebl, R., Monz, M., Varga, S., Maglaras, L., Janicke, H., Al-Bayatti, A.H., Facchi, C.: Improved security performance for VANET simulations. In: 4th IFAC Symposium on Telematics Applications (TA 2016), vol. 49, pp. 233–238. Elsevier, Porto Alwegre (2016). https://doi.org/10.1016/j.ifacol.2016.11.173 CrossRefGoogle Scholar
  45. 45.
    Santini, S., Salvi, A., Valente, A.S., Pescapè, A., Segata, M., Lo Cigno, R.: A consensus-based approach for platooning with inter-vehicular communications and its validation in realistic scenarios. IEEE Trans. Veh. Technol. 66(3), 1985–1999 (2017).  https://doi.org/10.1109/TVT.2016.2585018 CrossRefGoogle Scholar
  46. 46.
    Segata, M.: Safe and efficient communication protocols for platooning control. Ph.D. thesis (dissertation), University of Innsbruck (2016)Google Scholar
  47. 47.
    Segata, M.: Platooning in SUMO: an open source implementation. In: SUMO User Conference 2017, pp. 51–62. DLR, Berlin (2017)Google Scholar
  48. 48.
    Segata, M., Joerer, S., Bloessl, B., Sommer, C., Dressler, F., Lo Cigno, R.: PLEXE: a platooning extension for Veins. In: 6th IEEE Vehicular Networking Conference (VNC 2014), pp. 53–60. IEEE, Paderborn (2014).  https://doi.org/10.1109/VNC.2014.7013309
  49. 49.
    Segata, M., Bloessl, B., Joerer, S., Sommer, C., Gerla, M., Lo Cigno, R., Dressler, F.: Towards communication strategies for platooning: simulative and experimental evaluation. IEEE Trans. Veh. Technol. 64(12), 5411–5423 (2015).  https://doi.org/10.1109/TVT.2015.2489459 CrossRefGoogle Scholar
  50. 50.
    Segata, M., Dressler, F., Lo Cigno, R.: Jerk beaconing: a dynamic approach to platooning. In: 7th IEEE Vehicular Networking Conference (VNC 2015), pp. 135–142. IEEE, Kyoto (2015).  https://doi.org/10.1109/VNC.2015.7385560
  51. 51.
    Shladover, S.: PATH at 20 – history and major milestones. In: IEEE Intelligent Transportation Systems Conference (ITSC 2006), pp. 22–29. Toronto (2006).  https://doi.org/10.1109/ITSC.2006.1706710
  52. 52.
    Sommer, C., Dressler, F.: Using the right two-ray model? A measurement based evaluation of PHY models in VANETs. In: 17th ACM International Conference on Mobile Computing and Networking (MobiCom 2011), Poster Session. ACM, Las Vegas (2011)Google Scholar
  53. 53.
    Sommer, C., Dressler, F.: Vehicular Networking. Cambridge University Press, Cambridge (2014).  https://doi.org/10.1017/CBO9781107110649
  54. 54.
    Sommer, C., Krul, R., German, R., Dressler, F.: Emissions vs. travel time: simulative evaluation of the environmental impact of ITS. In: 71st IEEE Vehicular Technology Conference (VTC2010-Spring), pp. 1–5. IEEE, Taipei (2010).  https://doi.org/10.1109/VETECS.2010.5493943
  55. 55.
    Sommer, C., Eckhoff, D., German, R., Dressler, F.: A computationally inexpensive empirical model of IEEE 802.11p radio shadowing in urban environments. In: 8th IEEE/IFIP Conference on Wireless on Demand Network Systems and Services (WONS 2011), pp. 84–90. IEEE, Bardonecchia (2011).  https://doi.org/10.1109/WONS.2011.5720204
  56. 56.
    Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011).  https://doi.org/10.1109/TMC.2010.133 CrossRefGoogle Scholar
  57. 57.
    Sommer, C., Eckhoff, D., Dressler, F.: IVC in cities: signal attenuation by buildings and how parked cars can improve the situation. IEEE Trans. Mob. Comput. 13(8), 1733–1745 (2014).  https://doi.org/10.1109/TMC.2013.80 CrossRefGoogle Scholar
  58. 58.
    Sommer, C., Joerer, S., Segata, M., Tonguz, O.K., Lo Cigno, R., Dressler, F.: How shadowing hurts vehicular communications and how dynamic beaconing can help. IEEE Trans. Mob. Comput. 14(7), 1411–1421 (2015).  https://doi.org/10.1109/TMC.2014.2362752 CrossRefGoogle Scholar
  59. 59.
    Torrent-Moreno, M., Schmidt-Eisenlohr, F., Füßler, H., Hartenstein, H.: Effects of a realistic channel model on packet forwarding in vehicular ad hoc networks. In: IEEE Wireless Communications and Networking Conference (WCNC 2006), pp. 385–391. IEEE, Las Vegas (2006).  https://doi.org/10.1109/WCNC.2006.1683495
  60. 60.
    Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62(2), 1805–1824 (2000)CrossRefGoogle Scholar
  61. 61.
    Virdis, A., Stea, G., Nardini, G.: SimuLTE - a modular system-level simulator for LTE/LTE-A networks based on OMNeT++. In: 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2014). Vienna (2014)Google Scholar
  62. 62.
    Virdis, A., Nardini, G., Stea, G.: Modeling unicast device-to-device communications with SimuLTE. In: 2016 1st International Workshop on Link- and System Level Simulations (IWSLS), pp. 1–8. IEEE, Vienna (2016)Google Scholar
  63. 63.
    Virdis, A., Stea, G., Nardini, G.: Simulating LTE/LTE-advanced networks with SimuLTE. In: Obaidat, S.M., Ören, T., Kacprzyk, J., Filipe, J. (eds.) Simulation and Modeling Methodologies, No. 402. Advances in Intelligent Systems and Computing, pp. 83–105. Springer, Cham (2016)Google Scholar
  64. 64.
    Wessel, K., Swigulski, M., Köpke, A., Willkomm, D.: MiXiM – the physical layer: an architecture overview. In: 2nd ACM/ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools 2009): 2nd ACM/ICST International Workshop on OMNeT++ (OMNeT++ 2009). ACM, Rome (2009)Google Scholar
  65. 65.
    Zardosht, B., Beauchemin, S.S., Bauer, M.A.: A predictive accident-duration based decision-making module for rerouting in environments with V2V communication. Elsevier J. Traffic and Transp. Eng. (2017). https://doi.org/10.1016/j.jtte.2017.07.007 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christoph Sommer
    • 1
    Email author
  • David Eckhoff
    • 2
    Email author
  • Alexander Brummer
    • 3
  • Dominik S. Buse
    • 1
  • Florian Hagenauer
    • 1
  • Stefan Joerer
    • 4
  • Michele Segata
    • 5
  1. 1.Heinz Nixdorf Institute and Department of Computer SciencePaderborn UniversityPaderbornGermany
  2. 2.TUMCREATE LtdSingaporeSingapore
  3. 3.Computer Networks and Communication SystemsUniversity of Erlangen-NürnbergErlangenGermany
  4. 4.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  5. 5.Department of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly

Personalised recommendations