Advertisement

Towards Optimizing Energy Efficiency and Alleviating Void Holes in UWSN

  • Abdul Mateen
  • Nadeem JavaidEmail author
  • Muhammad Bilal
  • Muhammad Arslan Farooq
  • Zahoor Ali Khan
  • Fareena Riaz
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 29)

Abstract

Underwater Wireless Sensor Networks (UWSNs) are promising and emerging framework having a wide range of applications. The underwater sensor deployment is beneficial; however, some factors limit the performance of the network, i.e., less reliability, high end-to-end delay and maximum energy dissipation. The provisioning of aforementioned factors have become challenging task for the research community. In UWSNs, battery consumption is inevitable and has a direct impact on the performance of the network. Most of the time energy dissipates due to the creation of void holes and imbalanced network deployment. In this work, a routing protocol is proposed to avoid the void holes problem and extra energy dissipation, due to which lifespan of the network increases. To show the efficacy of our proposed routing scheme, it is compared with state of the art protocols. Simulations result show that the proposed scheme outperforms the counterparts.

Keywords

GEDPAR Void holes Energy efficiency Underwater Wireless Sensor Network (UWSNs) Depth adjustment Transmission range 

References

  1. 1.
    Khasawneh, A., Latiff, M.S.B.A., Kaiwartya, O., Chizari, H.: A reliable energy-efficient pressure-based routing protocol for the underwater wireless sensor network. Wireless Netw. 24(6), 2061–2075 (2018)CrossRefGoogle Scholar
  2. 2.
    Hong, Z., Pan, X., Chen, P., Su, X., Wang, N., Lu, W.: A topology control with energy balance in underwater wireless sensor networks for IoT-based application. Sensors 18(7), 2306 (2018)CrossRefGoogle Scholar
  3. 3.
    Wang, H., Wang, S., Zhang, E., Lu, L.: An energy balanced and lifetime extended routing protocol for underwater sensor networks. Sensors 18(5), 1596 (2018)CrossRefGoogle Scholar
  4. 4.
    Khan, A., Ali, I., Rahman, A.U., Imran, M., Mahmood, H.: Co-EEORS: cooperative energy efficient optimal relay selection protocol for underwater wireless sensor networks. IEEE Access (2018)Google Scholar
  5. 5.
    Ahmed, F., Wadud, Z., Javaid, N., Alrajeh, N., Alabed, M.S., Qasim, U.: Mobile sinks assisted geographic and opportunistic routing based interference avoidance for underwater wireless sensor network. Sensors 18(4), 1062 (2018)CrossRefGoogle Scholar
  6. 6.
    Sher, A., Khan, A., Javaid, N., Ahmed, S., Aalsalem, M., Khan, W.: Void hole avoidance for reliable data delivery in IoT enabled underwater wireless sensor networks. Sensors 18(10), 3271 (2018)CrossRefGoogle Scholar
  7. 7.
    Nayyar, A., Puri, V., Le, D.-N.: Comprehensive analysis of routing protocols surrounding Underwater Sensor Networks (UWSNs). In: Balas, V., Sharma, N., Chakrabarti, A. (eds.) Data Management, Analytics and Innovation, pp. 435–450. Springer, Singapore (2019)CrossRefGoogle Scholar
  8. 8.
    Wu, F.-Y., Yang, K., Duan, R.: Compressed sensing of underwater acoustic signals via structured approximation \( l_ 0 \) norm. IEEE Trans. Veh. Technol. 67(9), 8504–8513 (2018)CrossRefGoogle Scholar
  9. 9.
    Khosravi, M.R., Basri, H., Rostami, H.: Efficient routing for dense UWSNs with high-speed mobile nodes using spherical divisions. J. Supercomputing 74(2), 696–716 (2018)CrossRefGoogle Scholar
  10. 10.
    Gomathi, R.M., Manickam, J.M.L.: Energy efficient shortest path routing protocol for underwater acoustic wireless sensor network. Wireless Pers. Commun. 98(1), 843–856 (2018)CrossRefGoogle Scholar
  11. 11.
    Hou, R., He, L., Hu, S., Luo, J.: Energy-balanced unequal layering clustering in underwater acoustic sensor networks. IEEE Access 6, 39685–39691 (2018)CrossRefGoogle Scholar
  12. 12.
    Iwata, M., Tang, S., Obana, S.: Energy-efficient data collection method for sensor networks by integrating asymmetric communication and wake-up radio. Sensors 18(4), 1121 (2018)CrossRefGoogle Scholar
  13. 13.
    Muhammed, D., Anisi, M.H., Zareei, M., Vargas-Rosales, C., Khan, A.: Game theory-based cooperation for underwater acoustic sensor networks: taxonomy, review, research challenges and directions. Sensors 18(2), 425 (2018)CrossRefGoogle Scholar
  14. 14.
    Jan, M.A., Tan, Z., He, X., Ni, W.: Moving towards highly reliable and effective sensor networks (2018)Google Scholar
  15. 15.
    Yildiz, H.U., Gungor, V.C., Tavli, B.: Packet size optimization for lifetime maximization in underwater acoustic sensor networks. IEEE Trans. Industr. Inf. (2018)Google Scholar
  16. 16.
    Khalid, M., Cao, Y., Ahmad, N., Khalid, W., Dhawankar, P.: Radius-based multipath courier node routing protocol for acoustic communications. IET Wireless Sens. Syst. (2018)Google Scholar
  17. 17.
    Latif, K., Javaid, N., Ahmad, A., Khan, Z.A., Alrajeh, N., Khan, M.I.: On energy hole and coverage hole avoidance in underwater wireless sensor networks. IEEE Sens. J. 16(11), 4431–4442 (2016)CrossRefGoogle Scholar
  18. 18.
    Wang, H., Wen, Y., Lu, Y., Zhao, D., Ji, C.: Secure localization algorithms in wireless sensor networks: a review. In: Bhatia, S., Tiwari, S., Mishra, K., Trivedi, M. (eds.) Advances in Computer Communication and Computational Sciences, pp. 543–553. Springer, Singapore (2019)CrossRefGoogle Scholar
  19. 19.
    Yuan, Y., Liang, C., Kaneko, M., Chen, X., Hogrefe, D.: Topology control for energy-efficient localization in mobile underwater sensor networks using Stackelberg game. arXiv preprint arXiv:1805.12361 (2018)
  20. 20.
    Rahman, Z., Hashim, F., Rasid, M.F.A., Othman, M.: Totally Opportunistic Routing Algorithm (TORA) for underwater wireless sensor network. PloS ONE 13(6), e0197087 (2018)CrossRefGoogle Scholar
  21. 21.
    Heidemann, J., Stojanovic, M., Zorzi, M.: Underwater sensor networks: applications, advances and challenges. Phil. Trans. R. Soc. A 370(1958), 158–175 (2018)CrossRefGoogle Scholar
  22. 22.
    Javaid, N., Majid, A., Sher, A., Khan, W., Aalsalem, M.: Avoiding void holes and collisions with reliable and interference-aware routing in underwater WSNs. Sensors 18(9), 3038 (2018)CrossRefGoogle Scholar
  23. 23.
    Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Geographic and opportunistic routing for underwater sensor networks. IEEE Trans. Comput. 65(2), 548–561 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xu, J., Li, K., Min, G., Lin, K., Qu, W.: Energy-efficient tree-based multipath power control for underwater sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(11), 2107–2116 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abdul Mateen
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Muhammad Bilal
    • 2
  • Muhammad Arslan Farooq
    • 3
  • Zahoor Ali Khan
    • 4
  • Fareena Riaz
    • 5
  1. 1.COMSATS University IslamabadIslamabadPakistan
  2. 2.School of Computing and IT, Centre for Data Science and AnalyticsTaylor’s UniversitySubang JayaMalaysia
  3. 3.Government College UniversityLahorePakistan
  4. 4.Computer Information ScienceHigher Colleges of TechnologyFujairahUAE
  5. 5.University of KotliAzad KashmirPakistan

Personalised recommendations