A Deep Learning Approach Towards Price Forecasting Using Enhanced Convolutional Neural Network in Smart Grid

Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 29)


In this paper, we attempt to predict short term price forecasting in Smart Grid (SG) deep learning and data mining techniques. We proposed a model for price forecasting, which consists of three steps: feature engineering, tuning classifier and classification. A hybrid feature selector is propose by fusing XG-Boost (XGB) and Decision Tree (DT). To perform feature selection, threshold is defined to control selection. In addition, Recursive Feature Elimination (RFE) is used for to remove redundancy of data. In order, to tune the parameters of classifier dynamically according to dataset we adopt Grid Search (GS). Enhanced Convolutional Neural Network (ECNN) and Support Vector Regression (SVR) are used for classification. Lastly, to investigate the capability of proposed model, we compare proposed model with different benchmark scheme. The following performance metrics: MSE, RMSE, MAE, and MAPE are used to evaluate the performance of models.


  1. 1.
    Masip-Bruin, X., Marin-Tordera, E., Jukan, A., Ren, G.-J.: Managing resources continuity from the edge to the cloud: architecture and performance. Future Gener. Comput. Syst. 79, 777–785 (2018)CrossRefGoogle Scholar
  2. 2.
    Osman, A.M.S.: A novel big data analytics framework for smart cities. Future Gener. Comput. Syst. (2018)Google Scholar
  3. 3.
    Chen, X., Zhou, Y., Wei, D., Tang, J., Guo, Y.: Design of intelligent Demand Side Management system respond to varieties of factors. In: 2010 China International Conference on Electricity Distribution (CICED), pp. 1–5. IEEE (2010)Google Scholar
  4. 4.
    Jindal, A., Singh, M., Kumar, N.: Consumption-aware data analytical demand response scheme for peak load reduction in smart grid. IEEE Trans. Industr. Electron. (2018)Google Scholar
  5. 5.
    Bilalli, B., Abell, A., Aluja-Banet, T., Wrembel, R.: Intelligent assistance for data pre-processing. Comput. Stand. Interfaces 57, 101–109 (2018)CrossRefGoogle Scholar
  6. 6.
    Mohsenian-Rad, A.-H., Leon-Garcia, A.: Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid 1(2), 120–133 (2010)CrossRefGoogle Scholar
  7. 7.
    Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2017)CrossRefGoogle Scholar
  8. 8.
    Erol-Kantarci, M., Mouftah, H.T.: Energy-efficient information and communication infrastructures in the smart grid: a survey on interactions and open issues. IEEE Commun. Surv. Tutorials 17(1), 179–197 (2015)CrossRefGoogle Scholar
  9. 9.
    Wang, K., Li, H., Feng, Y., Tian, G.: Big data analytics for system stability evaluation strategy in the energy Internet. IEEE Trans. Industr. Inf. 13(4), 1969–1978 (2017)CrossRefGoogle Scholar
  10. 10.
    Wang, K., Ouyang, Z., Krishnan, R., Shu, L., He, L.: A game theory-based energy management system using price elasticity for smart grids. IEEE Trans. Industr. Inf. 11(6), 1607–1616 (2015)CrossRefGoogle Scholar
  11. 11.
    Kuo, P.-H., Huang, C.-J.: An electricity price forecasting model by hybrid structured deep neural networks. Sustainability 10(4), 1280 (2018)CrossRefGoogle Scholar
  12. 12.
    Ugurlu, U., Oksuz, I., Tas, O.: Electricity price forecasting using recurrent neural networks. Energies 11(5), 1–23 (2018)CrossRefGoogle Scholar
  13. 13.
    Eapen, R.R., Simon, S.P.: Performance analysis of combined similar day and day ahead short term electrical load forecasting using sequential hybrid neural networks. IETE J. Res. 1–11 (2018)Google Scholar
  14. 14.
    Chitsaz, H., Zamani-Dehkordi, P., Zareipour, H., Parikh, P.: Electricity price forecasting for operational scheduling of behind-the-meter storage systems. IEEE Trans. Smart Grid (2017)Google Scholar
  15. 15.
    Patil, M., Deshmukh, S.R., Agrawal, R.: Electric power price forecasting using data mining techniques. In: 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), pp. 217–223. IEEE (2017)Google Scholar
  16. 16.
    Ziming, M.A., Zhong, H., Xie, L., Xia, Q., Kang, C.: Month ahead average daily electricity price profile forecasting based on a hybrid nonlinear regression and SVM model: an ERCOT case study. J. Mod. Power Syst. Clean Energy 6(2), 281–291 (2018)CrossRefGoogle Scholar
  17. 17.
    Lago, J., De Ridder, F., De Schutter, B.: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018)CrossRefGoogle Scholar
  18. 18.
    Wang, K., Xu, C., Zhang, Y., Guo, S., Zomaya, A.: Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans. Big Data (2017)Google Scholar
  19. 19.
    Wang, L., Zhang, Z., Chen, J.: Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 32(4), 2673–2681 (2017)CrossRefGoogle Scholar
  20. 20.
    Lago, J., De Ridder, F., Vrancx, P., De Schutter, B.: Forecasting day-ahead electricity prices in Europe: the importance of considering market integration. Appl. Energy 211, 890–903 (2018)CrossRefGoogle Scholar
  21. 21.
    Raviv, E., Bouwman, K.E., van Dijk, D.: Forecasting day-ahead electricity prices: utilizing hourly prices. Energy Econ. 50, 227–239 (2015)CrossRefGoogle Scholar
  22. 22.
    Mujeeb, S., Javaid, N., Akbar, M., Khalid, R., Nazeer, O., Khan, M.: Big data analytics for price and load forecasting in smart grids. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 77–87. Springer, Cham (2018)Google Scholar
  23. 23.
    Rafiei, M., Niknam, T., Khooban, M.-H.: Probabilistic forecasting of hourly electricity price by generalization of ELM for usage in improved wavelet neural network. IEEE Trans. Industr. Inf. 13(1), 71–79 (2017)CrossRefGoogle Scholar
  24. 24.
    Abedinia, O., Amjady, N., Zareipour, H.: A new feature selection technique for load and price forecast of electrical power systems. IEEE Trans. Power Syst. 32(1), 62–74 (2017)CrossRefGoogle Scholar
  25. 25.
    Ghasemi, A., Shayeghi, H., Moradzadeh, M., Nooshyar, M.: A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management. Appl. Energy 177, 40–59 (2016)CrossRefGoogle Scholar
  26. 26.
    Shayeghi, H., Ghasemi, A., Moradzadeh, M., Nooshyar, M.: Simultaneous day-ahead forecasting of electricity price and load in smart grids. Energy Convers. Manage. 95, 371–384 (2015)CrossRefGoogle Scholar
  27. 27.
    Keles, D., Scelle, J., Paraschiv, F., Fichtner, W.: Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Appl. Energy 162, 218–230 (2016)CrossRefGoogle Scholar
  28. 28.
    Wang, J., Liu, F., Song, Y., Zhao, J.: A novel model: Dynamic Choice Artificial Neural Network (DCANN) for an electricity price forecasting system. Appl. Soft Comput. 48, 281–297 (2016)CrossRefGoogle Scholar
  29. 29.
    Varshney, H., Sharma, A., Kumar, R.: A hybrid approach to price forecasting incorporating exogenous variables for a day ahead electricity market. In: IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1–6. IEEE (2016)Google Scholar
  30. 30.
    Mosbah, H., El-Hawary, M.: Hourly electricity price forecasting for the next month using multilayer neural network. Can. J. Electr. Comput. Eng. 39(4), 283–291 (2016)CrossRefGoogle Scholar
  31. 31.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.COMSATS UniversityIslamabadPakistan
  2. 2.Abasyn University Islamabad CampusIslamabadPakistan
  3. 3.Computer Information ScienceHigher Colleges of TechnologyFujairahUAE

Personalised recommendations