Advertisement

Distributed Autonomous and Asynchronous Automata (DA3)

  • Wiktor B. DaszczukEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 817)

Abstract

In the practice of computer engineering, various forms of automata are used to express the behavior of concurrent components. There are two reasons: graphical representation and individual modeling of separate components. UML state diagrams are a good example (UML n.d.).

References

  1. Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2), 183–235.  https://doi.org/10.1016/0304-3975(94)90010-8.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Balan, M. S. (2009). Serializing the parallelism in parallel communicating pushdown automata systems. Electronic Proceedings in Theoretical Computer Science, 3, 59–68.  https://doi.org/10.4204/EPTCS.3.5.CrossRefGoogle Scholar
  3. Behrmann, G., David, A, & Larsen, K. G. (2006). A tutorial on Uppaal 4.0. Aalborg, Denmark. http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf.
  4. Bollig, B., & Leucker M. (2004). Message-passing automata are expressively equivalent to EMSO logic. In 15th International Conference CONCUR 2004—Concurrency Theory, London, UK, August 31–September 3, 2004 (pp. 146–160). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-540-28644-8_10.
  5. Bollig, B., & Leucker, M. (2005). A hierarchy of implementable MSC languages. In Formal techniques for networked and distributed systems—FORTE 2005, Taipei, Taiwan, October 2–5, 2005 (pp. 53–67). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/11562436_6.
  6. Brim, L., Černá, I., Moravec, P., & Šimša, J. (2006). How to order vertices for distributed LTL model-checking based on accepting predecessors. Electronic Notes in Theoretical Computer Science, 135(2), 3–18.  https://doi.org/10.1016/j.entcs.2005.10.015.
  7. Caillaud, B., Caspi, P., Girault, A., & Jard, C. (1997). Distributing automata for asynchronous networks of processors. European Journal of Automation (RAIRO-APII-JESA), 31(3), 503–524. Url: ftp://ftp.inrialpes.fr/pub/bip/pub/girault/Publications/Jesa97/main.pdf
  8. Dick, G., & Yao, X. (2014). Model representation and cooperative coevolution for finite-state machine evolution. In 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, July 6–11, 2014 (pp. 2700–2707). New York, NY: IEEE.  https://doi.org/10.1109/cec.2014.6900622.
  9. Diekert, V., & Muscholl, A. (2012). On distributed monitoring of asynchronous systems. In 19th International Workshop on Logic, Language, Information and Computation, WoLLIC 2012, Buenos Aires, Argentina, September 3–6, 2012 (pp. 70–84). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-32621-9_5.
  10. Enea, C., Habermehl, P., & Parlato, G. (2014). On the path-width of integer linear programming. Electronic Proceedings in Theoretical Computer Science, 161, 74–87.  https://doi.org/10.4204/EPTCS.161.9.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fernau, H., Holzer, M., & Freund, R. (2001). Hybrid modes in cooperating distributed grammar systems: Internal versus external hybridization. Theoretical Computer Science, 259(1–2), 405–426.  https://doi.org/10.1016/S0304-3975(00)00022-0.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Gros-Desormeaux, H., Fouchal, H., & Hunel, P. (2008). A comparison of distributed test generation techniques. In R. Ben Ayed & K. Djemame (Eds.), Second International Conference on Verification and Evaluation of Computer and Communication Systems VECoS’08, Leeds, UK, July 2–3, 2008 (pp. 38–49). Swinton, UK: British Computer Society. https://dl.acm.org/citation.cfm?id=2227467.
  13. Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on Software Engineering, 23(5), 279–295.  https://doi.org/10.1109/32.588521.CrossRefGoogle Scholar
  14. Huguet, S., & Petit, A. (1995). Modular constructions of distributing automata. In Mathematical Foundations of Computer Science 1995, 20th International Symposium, MFCS’95, Prague, Czech Republic, August 28–September 1, 1995 (pp. 467–478). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/3-540-60246-1_152.
  15. Krishnan, P. (2000). Distributed timed automata. Electronic Notes in Theoretical Computer Science, 28, 5–21.  https://doi.org/10.1016/S1571-0661(05)80627-9.CrossRefGoogle Scholar
  16. Krithivasan, K., Balan, M. S., & Harsha, P. (1999). Distributed processing in automata. International Journal of Foundations of Computer Science, 10(04), 443–463.  https://doi.org/10.1142/S0129054199000319.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Krithivasan, K., & Ramanujan, A. (2013). On the power of distributed bottom-up tree automata. International Journal of Advanced Computer Science, 3(4), 184–190. http://worldcomp-proceedings.com/proc/p2011/FCS2998.pdf.
  18. Madhusudan, P., & Parlato, G. (2011). The tree width of auxiliary storage. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages—POPL’11, Austin, TX, January 26–28, 2011 (pp. 283–294). New York, NY, USA: ACM Press.  https://doi.org/10.1145/1926385.1926419.
  19. Mohalik, S., & Ramanujam, R. (2002). Distributed automata in an assumption-commitment framework. Sadhana, 27(2), 209–250.  https://doi.org/10.1007/BF02717184.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Mukund, M. (2012). Automata on distributed alphabets. In Modern applications of automata theory (pp. 257–288). Co-Published with Indian Institute of Science (IISc), Bangalore, India.  https://doi.org/10.1142/9789814271059_0009.
  21. Muscholl, A. (2015). Automated synthesis of distributed controllers. In Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6–10, 2015, Part II (pp. 11–27).  https://doi.org/10.1007/978-3-662-47666-6_2.
  22. Niebert, P. (1995). A ν-calculus with local views for systems of sequential agents. In 20th International Symposium on Mathematical Foundations of Computer Science MFCS’95, Prague, Czech Republic, August 28–September 1, 1995 (pp. 563–573). London, UK: Springer.  https://doi.org/10.1007/3-540-60246-1_161.
  23. Olson, A. G., Evans, B. L. (2005). Deadlock detection for distributed process networks. In ICASSP’05. IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, March 18–23, 2005, Vol. V (Vol. 5, pp. 73–76). New York, NY: IEEE.  https://doi.org/10.1109/icassp.2005.1416243.
  24. Păun G. (1995). Grammar systems: A grammatical approach to distribution and cooperation. In Automata, languages and programming (pp. 429–443). Newark, NJ: Gordon and Breach Science Publishers, Inc.  https://doi.org/10.1007/3-540-60084-1_94.
  25. Petit, A. (1993). Recognizable trace languages, distributed automata and the distribution problem. Acta Informatica, 30(1), 89–101.  https://doi.org/10.1007/BF01200264.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Sandholm, A. B., & Schwartzbach, M. I. (1997). Distributed safety controllers for web services. BRICS Report Series, 4(47).  https://doi.org/10.7146/brics.v4i47.19268.
  27. UML. (n.d.). http://www.uml.org/
  28. Van Chieu, D., & Van Hung, D. (2010). An extension of mazukiewicz traces and their applications in specification of real-time systems. In 2010 Second International Conference on Knowledge and Systems Engineering, Hanoi, Vietnam, October 7–9, 2010 (pp. 167–171). New York, NY: IEEE.  https://doi.org/10.1109/kse.2010.39.
  29. Zielonka, W. (1987). Notes on finite asynchronous automata. RAIRO—Theoretical Informatics and Applications, 21(2), 99–135.  https://doi.org/10.1051/ita/1987210200991.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations