Introduction and Review of Inspection Planning Methods

  • Slavenko M. StojadinovićEmail author
  • Vidosav D. Majstorović


Research and development of intelligent systems for inspection planning on coordinate measuring machines (CMMs) present a precondition for the development of a new generation of technological systems and their application in a digital quality concept, which is based on a global product interoperability model [1, 2, 3, 4, 5] where CAD-CAM-CAI information is integrated within a digital platform. This approach presents a basis for virtualisation, simulation and planning inside metrological systems, particularly for the inspection of prismatic parts (PMPs) on a CMM. Research conducted within this book relates to the field of inspection planning for the metrologically complex prismatic parts on a CMM. In a broad sense, the research is directed to the development of the local and global inspection plan for prismatic parts on a CMM. In a narrow sense, it encompasses determination of inspection sequences for metrological features, determination of the number and position of measuring points, as well as the optimal measuring probe path.


  1. 1.
  2. 2.
    Albus SJ (1993) A reference model architecture for intelligent systems design. Intelligent Systems Division, Manufacturing Engineering Laboratory, National Institute of Standards, Technology, GaithersburgGoogle Scholar
  3. 3.
    Zhao Y, Xu X, Kramer T, Proctor F, Horst J (2011) Dimensional metrology interoperability and standardization in manufacturing systems. Comput Stand Interfaces 33(6):541–555CrossRefGoogle Scholar
  4. 4.
    Zhao F, Brown JR, Kramer RT, Xu X (2011) Information modeling for interoperable dimensional metrology. Springer, LondonCrossRefGoogle Scholar
  5. 5.
    Westkamper E (2007) Digital manufacturing in the global era. In: Cunha PF, Maropoulos PG (eds) Digital enterprise technology, perspectives, future challenges. Springer, StuttgartGoogle Scholar
  6. 6.
    Durakbasa N, Bauer J, Bas G (2012) Developments in high precision metrology for advanced manufacturing. In: Proceedings of the ICMEM, pp 210–215Google Scholar
  7. 7.
    Durakbasa MN, Herbert PO, Bas G, Demircioglu P, Cakmakci M, Hornikova A (2012) Novel developments in dimensional nanometrology in the context of geometrical product specifications and verification (GPS). J Autom Mob Robot Intell Syst 6(2):22–25Google Scholar
  8. 8.
    Hansen NH, Carneiro K, Haitjema H, Chiffre DL (2006) Dimensional micro and nano metrology. Ann CIRP 55(2):721–743CrossRefGoogle Scholar
  9. 9.
    Lin CZ, Lin ZC (2000) IDEF0 model of the measurement planning for a workpiece machined by a machining centre. Precis Eng 16:656–667Google Scholar
  10. 10.
    Majstorovic V, Hodolic J (1998) Coordinate measuring machine. Faculty of Technical Science, Novi Sad, Serbia. ISBN 86-499-0091-7Google Scholar
  11. 11.
    Wu X, Zhang G (1997) Development of a modern co-ordinate measuring machine. Nanotechnol Precis Eng 114:186–190Google Scholar
  12. 12.
    Weckenmann A, Kraemer P, Hoffmann J (2007) Manufacturing metrology—state of the art and prospects. In: Proceedings of the 9th international symposium on measurement and quality control, Manufacturing Engineering Section, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India, pp 21–27Google Scholar
  13. 13.
    Durakbasa MN, Osanna HP (2009) Quality in industry. Vienna University of Technology, Wien, AustriaGoogle Scholar
  14. 14.
    Lubke K, Sun Z, Goch G (2012) Three-dimensional holistic approximation of measured points combined with an automatic separation algorithm. CIRP Ann Manuf Technol 61:499–502CrossRefGoogle Scholar
  15. 15.
    ElMaraghy HA, Gu PH (1987) Expert system for inspection planning. Ann CIRP 36(1):85–89CrossRefGoogle Scholar
  16. 16.
    Limaiem A, ElMaraghy AH (1998) Automatic path planning for coordinate measuring machine. In: Proceedings of the 1998 IEEE, international conference on robotics and automation, Leuven, Belgium, pp 887–892Google Scholar
  17. 17.
    Zhao H, Kruth JP, Gestel NV, Boeckmans B, Bleys P (2012) Automated dimensional inspection planning using the combination of laser scanner and tactile probe. Measurement 45:1057–1066CrossRefGoogle Scholar
  18. 18.
    Ravishankar S, Dutt HNV, Gurumoorthy B (2010) Automated inspection of aircraft parts using a modified ICP algorithm. Int J Adv Manuf Technol 46:227–236CrossRefGoogle Scholar
  19. 19.
    Chang HC, Lin AC (2010) Automatic inspection of turbine blades using 5-axis coordinate measurement machine. Int J Comput Integr Manuf 23(12):1071–1081CrossRefGoogle Scholar
  20. 20.
    Chang HC, Lin AC (2011) Five-axis automated measurement by coordinate measuring machine. Int J Adv Manuf Technol 55:657–673CrossRefGoogle Scholar
  21. 21.
    Yau HT, Menq CH (2005) Automated CMM path planning for dimensional inspection of dies and molds having complex surface. Int J Mach Tools Manuf 35(6):861–876CrossRefGoogle Scholar
  22. 22.
    Lu CG, Morton D, Myler P, Wu MH (1995) An artificial intelligent (AI) inspection path management for multiple tasks measurement on coordinate measuring machine (CMM): an application of neural network technology. In: Proceedings of the 95 engineering management conference, IEEE, Singapore, pp 353–357Google Scholar
  23. 23.
    Yau TH (1991) The development of an intelligent dimensional inspection environment using coordinate measuring machines. Doctoral dissertation, The Ohio State University, ColumbusGoogle Scholar
  24. 24.
    Lu CG, Morton D, Wu MH, Myler P (1999) Genetic algorithm modelling and solution of inspection path planning on a coordinate measuring machine (CMM). Int J Adv Manuf Technol 15:409–416CrossRefGoogle Scholar
  25. 25.
    Stojadinovic S, Majstorović V (2012) Towards the development of feature-based ontology for inspection planning system on CMM. J Mach Eng 12(1):89–98Google Scholar
  26. 26.
    Liangsheng Q, Guanhua X, Guohua W (1998) Optimization of the measuring path on a coordinate measuring machine using genetic algorithms. Measurement 22:159–170Google Scholar
  27. 27.
    Roy U, Xu Y, Wang L (1994) Development of an intelligent inspection planning system in an object oriented programming environment. Comput Integr Manuf Syst 7(4):240–246CrossRefGoogle Scholar
  28. 28.
    Zhang GX, Liu SG, Ma XH, Wang JL, Wu YQ, Li Z (2002) Towards the intelligent CMM. Ann CIRP 51(1):437–442CrossRefGoogle Scholar
  29. 29.
    Osanna PH (1997) Intelligent production metrology—a powerful tool for intelligent manufacturing. Elektrotechnik Informationstechnik 4(114):162–168CrossRefGoogle Scholar
  30. 30.
    Kuang CF, Ming CL (1998) Intelligent planning of CAD—directed inspection for coordinate measuring machine. Comput Integr Manuf Syst 11(1–2):43–51Google Scholar
  31. 31.
    Gerhardt LA, Hyun K (1995) View planning applied to coordinate measuring machine (CMM) measurement. In: Proceedings IEEE conference on industrial automation and control emerging technology applications, IEEE, Taipei, pp 540–544Google Scholar
  32. 32.
    Spitz NS, Requicha GAA (1999) Hierarchical constraint satisfaction for high-level dimensional inspection planning. In: Proceedings of the 1999 IEEE, international symposium on assembly and task planning, IEEE, Porto, pp 374–380Google Scholar
  33. 33.
    Hu Y, Yang Q, Sun X (2012) Design, implementation, and testing of advanced virtual coordinate-measuring machines. IEEE Trans Instrum Meas 5(61):1368–1376CrossRefGoogle Scholar
  34. 34.
    Sładek J, Gąska A, Olszewska M, Kupiec R, Krawczyk M (2013) Virtual coordinate measuring machine built using lasertracer system and spherical standard. Metrol Meas Syst 20(1):77–86CrossRefGoogle Scholar
  35. 35.
    Sładek J, Gaska A (2012) Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method. Measurement 45(1):1564–1575CrossRefGoogle Scholar
  36. 36.
    Aggogeri F, Barbato G, Barini ME, Genta G, Levi R (2011) Measurement uncertainty assessment of coordinate measuring machines by simulation and planned experimentation. CIRP J Manuf Sci Technol 4:51–56CrossRefGoogle Scholar
  37. 37.
    Kunzmann H, Pfeifer T, Schmitt R, Schwenke H, Weckenmann A (2005) Productive metrology—adding value to manufacture. Ann CIRP 54(2):155–168CrossRefGoogle Scholar
  38. 38.
    Beg J, Shunmugam S (2002) An object oriented planner for inspection of prismatic parts—OOPIPP. Int J Adv Manuf Technol 19:905–916CrossRefGoogle Scholar
  39. 39.
    Lin J-Y, Damodharan K, Shakarji C (2001) Standardised reference data sets generation for coordinate measuring machine (CMM) software assessment. Int J Adv Manuf Technol 18:819–830CrossRefGoogle Scholar
  40. 40.
    Taniguchi N (1983) Current status in, and future trends of, ultra precision machining and ultrafine materials processing. Ann CIRP 32(2):573–582CrossRefGoogle Scholar
  41. 41.
    Zhao X, Kethara PMT, Wilhelm GR (2006) Modeling and representation of geometric tolerances information in integrated measurement processes. Comput Ind 57(4):319–330CrossRefGoogle Scholar
  42. 42.
    Stefano DP, Bianconi F, Angelo DL (2004) An approach for feature semantics recognition in geometric models. Comput Aided Des 36:993–1009CrossRefGoogle Scholar
  43. 43.
    Lin J-Y, Mahabaleshwarkar R, Massina E (2001) CAD-based CMM dimensional inspection path planning—a generic algorithm. Robotica 19:137–148CrossRefGoogle Scholar
  44. 44.
    Zhou F, Kuo CT, Huang HS, Zhang HC (2002) Form feature and tolerance transfer from a 3D model to a set-up planning system. Int J Adv Manuf Technol 19:88–96CrossRefGoogle Scholar
  45. 45.
    Jiang CB, Chiu DS (2002) Form tolerance—based measurement point determination with CMM. J Intell Manuf 13:101–108CrossRefGoogle Scholar
  46. 46.
    Salomons OW, Poerink Jonge HJ, Haalboom FJ, Slooten F, Houten FJAM, Kals HJJ (1996) A computer aided tolerancing tool I: tolerance specification. Comput Ind 31:161–174CrossRefGoogle Scholar
  47. 47.
    Salomons OW, Haalboom FJ, Poerink Jonge HJ, Slooten F, Van Houten FJAM (1996) A computer aided tolerancing tool II: tolerance analysis. Int J Comput Integr Manuf 31:175–186Google Scholar
  48. 48.
    Mohib NMA, ElMaraghy AH (2010) Tolerance-based localization algorithm: form tolerance verification application. Int J Adv Manuf Technol 47:581–595CrossRefGoogle Scholar
  49. 49.
    Ge Q, Chen B, Smith P, Menq HC (1992) Tolerance specification and comparative analysis for computer-integrated dimensional inspection. Int J Prod Res 30(9):2173–2197CrossRefGoogle Scholar
  50. 50.
    Cho MW, Seo TI (2002) inspection planning strategy for the on-machine measurement process based on CAD/CAM/CAI integration. Int J Adv Manuf Technol 19:607–617CrossRefGoogle Scholar
  51. 51.
    Bhaskar Sathi VS, Rao PVM (2009) STEP to DMIS: automated generation of inspection plans from cad data. In: Proceedings of the 5th annual IEEE conference on automation science and engineering, Bangalore, India, August 22–25, pp 519–524Google Scholar
  52. 52.
    Zhao F, Xu X, Xie S (1998) STEP-NC enabled online inspection in support of closed-loop machining. Robot Comput-Integr Manuf 24:200–216CrossRefGoogle Scholar
  53. 53.
    Hwang YC, Tsai YC, Chang AC (2004) Efficient inspection planning for coordinate measuring machines. Int J Adv Manuf Technol 23:732–742CrossRefGoogle Scholar
  54. 54.
    Albuquerque AV, Liou WF, Mitchell RO (2000) Inspection point placement and path planning algorithms for automatic CMM inspection. Int J Comput Integr Manuf 13(2):107–120CrossRefGoogle Scholar
  55. 55.
    Barreiro J, Martinez S, Labarga JE, Cuesta E (2005) Validation of an information model for inspection with CMM. Int J Mach Tools Manuf 45:819–829CrossRefGoogle Scholar
  56. 56.
    McCaleb RM (1999) A conceptual data model of datum systems. J Res Nat Inst Stand Technol 104(4):349–400CrossRefGoogle Scholar
  57. 57.
    Vogel M, Ebinger N, Rosenberger M, Lin L (2010) A novel strategy for cost-efficient measurements with coordinate measurement machines. J Phys 238:1–6Google Scholar
  58. 58.
    Flack D (2001) CMM measurement strategies. Natl Physical Laboratory, Teddingoton, Middlesex, United KingdomGoogle Scholar
  59. 59.
    Hermann G (2008) Advanced techniques in the programming of coordinate measuring machines. In: Proceedings of the 6th international symposium on applied machine intelligence and informatics, IEEE, Herlany, pp 327–330Google Scholar
  60. 60.
    Legge DI (2001) Off-line programming of coordinate measuring machine. Licentiate thesis, Division of manufacturing engineering, Lulea University of Technology, LuleaGoogle Scholar
  61. 61.
    Lee JW, Kim MK, Kim K (1994) Optimal probe path generation and new guide point selection methods. Eng Appl Artif Intell 7(4):439–445CrossRefGoogle Scholar
  62. 62.
    Gu P, Chan K (1996) Generative inspection process and probe path planning for coordinate measuring machines. J Manuf Syst 15(4):240–255CrossRefGoogle Scholar
  63. 63.
    Lim PC, Menq HC (1994) CMM feature accessibility path generation. Int J Prod Res 32(3):597–618zbMATHCrossRefGoogle Scholar
  64. 64.
    Prieto F, Redarce T, Lepage R, Boulanger P (2002) An automated inspection system. Int J Adv Manuf Technol 19:917–925CrossRefGoogle Scholar
  65. 65.
    Juster PN, Hsu HL, Pennington DA (1994) Advances in feature based manufacturing: the selection of surface for inspection planning. ElsevierGoogle Scholar
  66. 66.
    Lin YJ, Murugappan P (1999) A new algorithm for determining a collision free path for a CMM probe. Int J Mach Tools Manuf 39:1397–1408CrossRefGoogle Scholar
  67. 67.
    Lin C-Z, Lin S-W (2001) Measurement point prediction of flatness geometric tolerance by using grey theory. Precis Eng J Int Soc Precis Eng Nanotechnol 25:171–184Google Scholar
  68. 68.
    Kweon S, Medeiros DJ (1998) Part orientations for CMM inspection using dimensioned visibility maps. Comput Aided Des 30:741–749zbMATHCrossRefGoogle Scholar
  69. 69.
    Ziemian CW, Medeiros DJ (1997) Automated feature accessibility for inspection on a coordinate measuring machine. Int J Prod Res 35(10):2839–2856zbMATHCrossRefGoogle Scholar
  70. 70.
    Lin JY, Murugappan P (2000) A new algorithm for CAD-directed CMM Dimensional inspection. Int J Adv Manuf Technol 16:107–112CrossRefGoogle Scholar
  71. 71.
    Limaiem A, ElMaraghy AH (1997) Automatic planning for coordinate measuring machines. In: Proceedings of the 1997 IEEE, international symposium on assembly and task planning, Marina del Rey, CA, pp 243–248Google Scholar
  72. 72.
    Wu Y, Liu S, Zhang G (2004) Improvement of coordinate measuring machine probing accessibility. Precis Eng 28:89–94CrossRefGoogle Scholar
  73. 73.
    Spitz NS, Spyridi JA, Requicha GAA (1999) Accessibility analysis for planning of dimensional inspection with coordinate measuring machines. IEEE Trans Robot Autom 15(4):714–722CrossRefGoogle Scholar
  74. 74.
    Alvarez JB, Fernandez P, Rico CJ, Mateos S, Suarez MC (2008) Accessibility analysis for automatic inspection in CMMs by using bounding volume hierarchies. Int J Prod Res 46(20):5797–5826zbMATHCrossRefGoogle Scholar
  75. 75.
    Rico CJ, Valino G, Mateous S, Cuesta E, Suarez CM (2002) Accessibility analysis for star probes in automatic inspection of rotational parts. Int J Prod Res 40(6):1493–1523zbMATHCrossRefGoogle Scholar
  76. 76.
    Chiang YM, Chen FL (1999) CMM probing accessibility in a single slot. Int J Adv Manuf Technol 15:261–267CrossRefGoogle Scholar
  77. 77.
    Weckenmann A, Estler T, Peggs G, McMurtry D (2004) Probing systems in dimensional metrology. Ann CIRP 53(2):657–684CrossRefGoogle Scholar
  78. 78.
    Wozniak A, Dobosz M (2003) Metrological feasibilities of CMM touch trigger probes. Part I: 3D theoretical model of probe pretravel. Measurement 34(4):273–286CrossRefGoogle Scholar
  79. 79.
    Jackman J, Park K-D (1998) Probe orientation for coordinate measuring machine systems using design models. Robot Comput-Integr Manuf 14:229–236CrossRefGoogle Scholar
  80. 80.
    Moroni G, Polini W, Semeraro Q (1998) Knowledge based method for touch probe configuration in an automated inspection system. J Mater Process Technol 76:153–160CrossRefGoogle Scholar
  81. 81.
    Ziemian W, Medeiros JD (1998) Automating probe selection and part setup planning for inspection on a coordinate measuring machine. Int J Comput Integr Manuf 11(5):448–460CrossRefGoogle Scholar
  82. 82.
    Zhao F, Xu X, Xie SQ (2009) Computer-aided inspection planning—the state of the art. Comput Ind 60(7):453–466CrossRefGoogle Scholar
  83. 83.
    Myeong WC, Honghee L, Gil SY, Jinhwa C (2005) A feature—based inspection planning system for coordinate measuring machines. Int J Adv Manuf Technol 26:1078–1087CrossRefGoogle Scholar
  84. 84.
    Kramer RT, Huang H, Messina E, Proctor MF, Scott H (2001) A feature—based inspection and machining system. Comput-Aided Des 33(9):653–669CrossRefGoogle Scholar
  85. 85.
    Zhang SG, Ajmal A, Wootton J, Chisholm A (2000) A feature based inspection process planning system for co-ordinate measuring machine (CMM). J Mater Process Technol 107:111–118CrossRefGoogle Scholar
  86. 86.
    Takamasu K, Furutani R, Ozono S (1999) Basic concept of feature-based metrology. Measurement 26:151–156CrossRefGoogle Scholar
  87. 87.
    Mohib A, Azab A, ElMaraghy H (2009) Feature-based hybrid inspection planning: a mathematical programming approach. Int J Comput Integr Manuf 22(1):13–29CrossRefGoogle Scholar
  88. 88.
    Sundararajan V, Wright KP (2002) Feature based macroplanning including fixturing. J Comput Inf Sci Eng Trans ASME 2:179–191CrossRefGoogle Scholar
  89. 89.
    Kamrani A, Nasr AE, Al-Ahmari A, Abdulhameed O, Mian HS (2014) Feature-based design approach for integrated CAD and computer aided inspection planning. Int J Adv Manuf Technol 76:2159–2183CrossRefGoogle Scholar
  90. 90.
    Ramesh M, Hoi-Yip D, Dutta D (2001) Feature based shape similarity measurement for retrieval of mechanical parts. J Comput Inf Sci Eng Trans ASME 1:245–256CrossRefGoogle Scholar
  91. 91.
    Shah JJ, Anderson D, Kim SY, Joshi S (2001) A Discourse on geometric feature recognition from CAD models. J Comput Inf Sci Eng Trans ASME 1:41–51CrossRefGoogle Scholar
  92. 92.
    Hennann G (1997) Feature-based off-line programming of coordinate measuring machines. In: Proceedings of the 1997 IEEE international conference on intelligent engineering systems, IEEE, Budapest, pp 545–548Google Scholar
  93. 93.
    Pham TD, Martin FK, Khoo PL (1991) A knowledge-base preprocessor for coordinate-measuring machines. Int J Prod Res 29(4):677–694CrossRefGoogle Scholar
  94. 94.
    Babic B, Nesic N, Miljkovic Z (2008) A review of automated feature recognition with rule-based pattern recognition. Comput Ind 59:321–337CrossRefGoogle Scholar
  95. 95.
    Kim S, Chang S (1996) The development of the off-line measurement planning system for inspection automation. Comput Ind Eng 30(3):531–542CrossRefGoogle Scholar
  96. 96.
    Cho WM, Lee H, Yoon SG, Choi HJ (2004) A computer-aided inspection planning system for on-machining measurement—Part II: Local inspection planning. KSM Int J 18:1358–1367CrossRefGoogle Scholar
  97. 97.
    Lee H, Cho M-W, Yoon G-S, Choi J-H (2004) A computer-aided inspection planning system for on-machine measurement—Part I: Global inspection planning. KSME Int J 8(18):1349–1357CrossRefGoogle Scholar
  98. 98.
    Wong FSY, Chuah KB, Venuvinod PK (2006) Inspection process planning: algorithmic inspection feature recognition, and inspection case representation for CBR. Robot Comput-Integr Manuf 22:56–68CrossRefGoogle Scholar
  99. 99.
    Wong YSF, Chuah BK, Venuvinod KP (2005) Automated extraction of dimensional inspection features from part computer-aided design models. Int J Prod Res 43(12):2377–2396CrossRefGoogle Scholar
  100. 100.
    Li Y, Gu P (2004) Free-form surface inspection techniques state of the art review. Comput Aided Des 36:1395–1417MathSciNetCrossRefGoogle Scholar
  101. 101.
    Hesham AH, Youssef MA, Shoukry KM (2012) Automated inspection planning system for CMMs. In: Proceedings of the international conference on engineering and technology, IEEE, pp 1–6Google Scholar
  102. 102.
  103. 103.
    Xu X, Newman ST (2003) Making CNC machine tools more open, interoperable and intelligent—a review of the technologies. Comput Ind 57(2):141–152CrossRefGoogle Scholar
  104. 104.
    Horst J, Kramer T, Stouffer K, Falco J, Huang HM, Proctor F, Wavering A Distributed testing of an equipment-level interface specification. National Institute of Standards, Technology (NIST), Gaithersburg, Maryland, USAGoogle Scholar
  105. 105.
    Ahmed F (2013) Interoperability of product and manufacturing information (PMI) using ontology. Master thesis, Korea Advanced Institute of Science, Technology, Daejeon, KoreaGoogle Scholar
  106. 106.
    Rippey W (2005) AIAG demonstrates metrology interoperability: to save you time and money. In: The international dimensional workshop, AIAG, NashvilleGoogle Scholar
  107. 107.
    Stojadinovic S, Majstorović V (2010) Metrology interoperability. Total Qual Manage Excellence 38(4):83–89Google Scholar
  108. 108.
    William R (2005) AIAG demonstrates metrology interoperability: to save you time and money. In: The international dimensional workshop, AIAG, NashvilleGoogle Scholar
  109. 109.
  110. 110.
    I++DML version 1.6, Dimensional measurement equipment interface, TutorialGoogle Scholar
  111. 111.
    Humienny Z (2009) State of art in standardization in GPS area. CIRP J Manuf Sci Technol 2(1):1–7CrossRefGoogle Scholar
  112. 112.
    ISO/FDIS 10303-203: Industrial automation systems and integration—product data representation and exchange—Part 203: Application protocols: configuration controlled 3D design (2007)Google Scholar
  113. 113.
    ISO/FDIS 10303-224: Industrial automation systems and integration—product data representation and exchange—Part 224: Application protocol: mechanical product definition for process planning using machining features (2006)Google Scholar
  114. 114.
    STEP tools, Inc. Sept 2018
  115. 115.
    Germani M, Mandorli F, Mengoni M, Raffaeli R (2010) CAD-based environment to bridge the gap between product design and tolerance control. Precis Eng 34:7–15CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Slavenko M. Stojadinović
    • 1
    Email author
  • Vidosav D. Majstorović
    • 2
  1. 1.Department of Production Engineering, Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Production Engineering, Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations