Advertisement

Cloud Computing for Smart Energy Management (CC-SEM Project)

  • Emmanuel LujánEmail author
  • Alejandro OteroEmail author
  • Sebastián ValenzuelaEmail author
  • Esteban MocskosEmail author
  • Luiz Angelo SteffenelEmail author
  • Sergio NesmachnowEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 978)

Abstract

This paper describes the Cloud Computing for Smart Energy Management (CC-SEM) project, a research effort focused on building an integrated platform for smart monitoring, controlling, and planning energy consumption and generation in urban scenarios. The project integrates cutting-edge technologies (Big Data analysis, computational intelligence, Internet of Things, High Performance Computing and Cloud Computing), specific hardware for energy monitoring/controlling built within the project and explores their communication. The proposed platform considers the point of view of both citizens and administrators, providing a set of tools for controlling home devices (for end users), planning/simulating scenarios of energy generation (for energy companies and administrators), and shows some advances in communication infrastructure for transmitting the generated data.

Keywords

Smart cities Cloud computing Energy efficiency 

Notes

Acknowledgment

CC-SEM project is supported by the STIC-AmSud regional program (France–South America).

References

  1. 1.
    Turner, W., Doty, S.: Energy Management Handbook. The Fairmont Press, Lilburn (2007)Google Scholar
  2. 2.
    Towsend, A.: Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia. Ww Norton & Co (2013)Google Scholar
  3. 3.
    Soares, A., Antunes, C., Oliveira, C., Gomes, A.: A multi-objective genetic approach to domestic load scheduling in an energy management system. Energy 77, 144–152 (2014)CrossRefGoogle Scholar
  4. 4.
    Zakariazadeh, A., Jadid, S., Siano, P.: Economic-environmental energy and reserve scheduling of smart distribution systems: a multiobjective mathematical programming approach. Energy Convers. Manage. 78, 151–164 (2014)CrossRefGoogle Scholar
  5. 5.
    Wahyuddin, Y.: To What extent the grand lyon metropole can harness the smart meter project towards the governance of territorial climate energy plan (PCET) study case: smart electric lyon project initiated by EDF [French Electric Utility Company]. In: International Conference on Public Policy (2017)Google Scholar
  6. 6.
    Gupta, S., Reynolds, M., Patel, S.: Electrisense: single-point sensing using EMI for electrical event detection and classification in the home. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 139–148 (2010)Google Scholar
  7. 7.
    Spagnolli, A., et al.: Eco-feedback on the go: motivating energy awareness. Computer 44(5), 38–45 (2011)CrossRefGoogle Scholar
  8. 8.
    Gamberini, L., et al.: Tailoring feedback to users’ actions in a persuasive game for household electricity conservation. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 100–111. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31037-9_9CrossRefGoogle Scholar
  9. 9.
    Costanza, E., Ramchurn, S., Jennings, N.: Understanding domestic energy consumption through interactive visualisation: a field study. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 216–225 (2012)Google Scholar
  10. 10.
    Rabaey, J., Ammer, M., da Silva, J., Patel, D., Roundy, S.: Picoradio supports ad hoc ultra-low power wireless networking. Computer 33(7), 42–48 (2000)CrossRefGoogle Scholar
  11. 11.
    Niyato, D., Xiao, L., Wang, P.: Machine-to-machine communications for home energy management system in smart grid. IEEE Commun. Mag. 49(4), 53–59 (2011)CrossRefGoogle Scholar
  12. 12.
    Karnouskos, S.: The cooperative Internet of Things enabled smart grid. In: 14th IEEE International Symposium on Consumer Electronics, pp. 7–10 (2010)Google Scholar
  13. 13.
    Orsi, E., Nesmachnow, S.: Iot for smart home energy planning. In: XXIII Congreso Argentino de Ciencias de la Computación (2017)Google Scholar
  14. 14.
    Orsi, E., Nesmachnow, S.: Smart home energy planning using IoT and the cloud. In: 2017 IEEE URUCON. IEEE (2017)Google Scholar
  15. 15.
    Kong, W., Dong, Z., Jia, Y., Hill, D., Xu, Y., Zhang, Y.: Short-term residential load forecasting based on lstm recurrent neural network. In: IEEE Transactions on Smart Grid Early Access (2017)Google Scholar
  16. 16.
    Amarasinghe, K., Marino, D., Manic, M.: Deep neural networks for energy load forecasting. In: IEEE 26th International Symposium on Industrial Electronics, pp. 1483–1488 (2017)Google Scholar
  17. 17.
    Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository, May 2018Google Scholar
  18. 18.
    Hong, S.: Individual household electric power consumption, May 2018Google Scholar
  19. 19.
    Zhou, K., Yang, S.: Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew. Sustain. Energy Rev. 56, 810–819 (2016)CrossRefGoogle Scholar
  20. 20.
    Holmgren, W., Andrews, R., Lorenzo, A., Stein, J.: PVLIB Python 2015. In: 2015 IEEE 42nd Photovoltaic Specialist Conference, pp. 1–5 (2015)Google Scholar
  21. 21.
    Holmgren, W., Groenendyk, D.: An open source solar power forecasting tool using PVLIB-python. In: 2016 IEEE 43rd Photovoltaic Specialists Conference, pp. 0972–0975 (2016)Google Scholar
  22. 22.
    IEEE: “Smart cities.” https://smartcities.ieee.org/. Accessed 02 Feb 2019
  23. 23.
    Ramírez, C.A., Barragán, R.C., García-Torales, G., Larios, V.M.: Low-power device for wireless sensor network for smart cities. In: 2016 IEEE MTT-S Latin America Microwave Conference (LAMC), pp. 1–3, December 2016Google Scholar
  24. 24.
    Wang, Y.E., et al.: A primer on 3G pp narrowband internet of things. IEEE Commun. Mag. 55, 117–123 (2017)CrossRefGoogle Scholar
  25. 25.
    Yu, C., Yu, L., Wu, Y., He, Y., Lu, Q.: Uplink scheduling and link adaptation for narrowband internet of things systems. IEEE Access 5, 1724–1734 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CSC-CONICETCiudad Autónoma de Buenos AiresArgentina
  2. 2.Facultad de IngenieríaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  3. 3.Universidad de la RepúblicaMontevideoUruguay
  4. 4.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  5. 5.Université de Reims-Champagne ArdenneReimsFrance

Personalised recommendations