Cloud Computing for Smart Energy Management (CC-SEM Project)

  • Emmanuel LujánEmail author
  • Alejandro OteroEmail author
  • Sebastián ValenzuelaEmail author
  • Esteban MocskosEmail author
  • Luiz Angelo SteffenelEmail author
  • Sergio NesmachnowEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 978)


This paper describes the Cloud Computing for Smart Energy Management (CC-SEM) project, a research effort focused on building an integrated platform for smart monitoring, controlling, and planning energy consumption and generation in urban scenarios. The project integrates cutting-edge technologies (Big Data analysis, computational intelligence, Internet of Things, High Performance Computing and Cloud Computing), specific hardware for energy monitoring/controlling built within the project and explores their communication. The proposed platform considers the point of view of both citizens and administrators, providing a set of tools for controlling home devices (for end users), planning/simulating scenarios of energy generation (for energy companies and administrators), and shows some advances in communication infrastructure for transmitting the generated data.


Smart cities Cloud computing Energy efficiency 



CC-SEM project is supported by the STIC-AmSud regional program (France–South America).


  1. 1.
    Turner, W., Doty, S.: Energy Management Handbook. The Fairmont Press, Lilburn (2007)Google Scholar
  2. 2.
    Towsend, A.: Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia. Ww Norton & Co (2013)Google Scholar
  3. 3.
    Soares, A., Antunes, C., Oliveira, C., Gomes, A.: A multi-objective genetic approach to domestic load scheduling in an energy management system. Energy 77, 144–152 (2014)CrossRefGoogle Scholar
  4. 4.
    Zakariazadeh, A., Jadid, S., Siano, P.: Economic-environmental energy and reserve scheduling of smart distribution systems: a multiobjective mathematical programming approach. Energy Convers. Manage. 78, 151–164 (2014)CrossRefGoogle Scholar
  5. 5.
    Wahyuddin, Y.: To What extent the grand lyon metropole can harness the smart meter project towards the governance of territorial climate energy plan (PCET) study case: smart electric lyon project initiated by EDF [French Electric Utility Company]. In: International Conference on Public Policy (2017)Google Scholar
  6. 6.
    Gupta, S., Reynolds, M., Patel, S.: Electrisense: single-point sensing using EMI for electrical event detection and classification in the home. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 139–148 (2010)Google Scholar
  7. 7.
    Spagnolli, A., et al.: Eco-feedback on the go: motivating energy awareness. Computer 44(5), 38–45 (2011)CrossRefGoogle Scholar
  8. 8.
    Gamberini, L., et al.: Tailoring feedback to users’ actions in a persuasive game for household electricity conservation. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 100–111. Springer, Heidelberg (2012). Scholar
  9. 9.
    Costanza, E., Ramchurn, S., Jennings, N.: Understanding domestic energy consumption through interactive visualisation: a field study. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 216–225 (2012)Google Scholar
  10. 10.
    Rabaey, J., Ammer, M., da Silva, J., Patel, D., Roundy, S.: Picoradio supports ad hoc ultra-low power wireless networking. Computer 33(7), 42–48 (2000)CrossRefGoogle Scholar
  11. 11.
    Niyato, D., Xiao, L., Wang, P.: Machine-to-machine communications for home energy management system in smart grid. IEEE Commun. Mag. 49(4), 53–59 (2011)CrossRefGoogle Scholar
  12. 12.
    Karnouskos, S.: The cooperative Internet of Things enabled smart grid. In: 14th IEEE International Symposium on Consumer Electronics, pp. 7–10 (2010)Google Scholar
  13. 13.
    Orsi, E., Nesmachnow, S.: Iot for smart home energy planning. In: XXIII Congreso Argentino de Ciencias de la Computación (2017)Google Scholar
  14. 14.
    Orsi, E., Nesmachnow, S.: Smart home energy planning using IoT and the cloud. In: 2017 IEEE URUCON. IEEE (2017)Google Scholar
  15. 15.
    Kong, W., Dong, Z., Jia, Y., Hill, D., Xu, Y., Zhang, Y.: Short-term residential load forecasting based on lstm recurrent neural network. In: IEEE Transactions on Smart Grid Early Access (2017)Google Scholar
  16. 16.
    Amarasinghe, K., Marino, D., Manic, M.: Deep neural networks for energy load forecasting. In: IEEE 26th International Symposium on Industrial Electronics, pp. 1483–1488 (2017)Google Scholar
  17. 17.
    Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository, May 2018Google Scholar
  18. 18.
    Hong, S.: Individual household electric power consumption, May 2018Google Scholar
  19. 19.
    Zhou, K., Yang, S.: Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew. Sustain. Energy Rev. 56, 810–819 (2016)CrossRefGoogle Scholar
  20. 20.
    Holmgren, W., Andrews, R., Lorenzo, A., Stein, J.: PVLIB Python 2015. In: 2015 IEEE 42nd Photovoltaic Specialist Conference, pp. 1–5 (2015)Google Scholar
  21. 21.
    Holmgren, W., Groenendyk, D.: An open source solar power forecasting tool using PVLIB-python. In: 2016 IEEE 43rd Photovoltaic Specialists Conference, pp. 0972–0975 (2016)Google Scholar
  22. 22.
    IEEE: “Smart cities.” Accessed 02 Feb 2019
  23. 23.
    Ramírez, C.A., Barragán, R.C., García-Torales, G., Larios, V.M.: Low-power device for wireless sensor network for smart cities. In: 2016 IEEE MTT-S Latin America Microwave Conference (LAMC), pp. 1–3, December 2016Google Scholar
  24. 24.
    Wang, Y.E., et al.: A primer on 3G pp narrowband internet of things. IEEE Commun. Mag. 55, 117–123 (2017)CrossRefGoogle Scholar
  25. 25.
    Yu, C., Yu, L., Wu, Y., He, Y., Lu, Q.: Uplink scheduling and link adaptation for narrowband internet of things systems. IEEE Access 5, 1724–1734 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CSC-CONICETCiudad Autónoma de Buenos AiresArgentina
  2. 2.Facultad de IngenieríaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  3. 3.Universidad de la RepúblicaMontevideoUruguay
  4. 4.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  5. 5.Université de Reims-Champagne ArdenneReimsFrance

Personalised recommendations