Lost in Space and Time: A Quest for Conceptual Spaces in Physics

  • Sylvia WenmackersEmail author
Part of the Synthese Library book series (SYLI, volume 405)


In this chapter, I investigate whether dimensions in physics are analogous to quality dimensions (in the sense of Gärdenfors P, Conceptual spaces: the geometry of thought, 2nd edn. MIT Press, Cambridge, MA, 2000, 2004) and whether phase spaces are to be considered as conceptual spaces (as proposed by Masterton G, Zenker F, Gärdenfors P, Eur J Philos Sci 7:127–150, 2017). To this end, I focus on the domain of force in classical physics and on the dimension of time from classical to relativistic physics. Meanwhile, I comment on the development of abstract spaces with non-spatial dimensions, such as conceptual spaces, which is itself part of a long history of conceptual development.


Conceptual space Dimensional analysis Phase space Philosophy of physics Relativity theory Time 



I am grateful to the organizers and participants of the workshop “Conceptual Spaces at Work” (2016) for giving me the opportunity to present and discuss my early ideas on this topic. I also thank Joel Parthemore, Danny Vanpoucke, and an anonymous referee for their helpful comments on an earlier version of this text. Part of this project was supported by a grant from the FWO (Research Foundation – Flanders) through grant number G0B8616N.


  1. Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., & Smolin, L. (2011). Principle of relative locality. Physical Review D, 84, 084010.CrossRefGoogle Scholar
  2. Blåsjö, V. (2016). The how and why of constructions in classical geometry. Nieuw Archief voor Wiskunde, 5(17), 283–291.Google Scholar
  3. Borovik, A. (2010). Mathematics under the microscope. London: American Mathematical Society.Google Scholar
  4. Bramwell, S. T. (2017). The invention of dimension. Nature Physics, 13, 820.CrossRefGoogle Scholar
  5. Bridgman, P. W. (1922). Dimensional analysis. New Haven: Yale University Press.Google Scholar
  6. Bureau International des Poids et Mesures. (2006). The international system of units (SI) (8th ed.).Google Scholar
  7. Carey, S., & Spelke, E. (1994). Domain-specific knowledge and conceptual change. In L. A. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind (pp. 169–200). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. de Courtenay, N. (2015). The double interpretation of the equations of physics and the quest for common meanings. In O. Schlaudt & L. Huber (Eds.), Standardization in measurement (pp. 53–68). London: Pickering & Chatto.Google Scholar
  9. Douven, I., Wenmackers, S., Jraissati, Y., & Decock, L. (2017). Measuring graded membership: The case of color. Cognitive Science, 41, 686–722.CrossRefGoogle Scholar
  10. Duff, M. J., Okun, L. B., & Veneziano, G. (2002). Trialogue on the number of fundamental constants. Journal of High Energy Physics, 03, 023.CrossRefGoogle Scholar
  11. Fourier, J. (1822). Théorie analytique de la chaleur. Paris: Didot.Google Scholar
  12. Gärdenfors, P. (2000, 2004). Conceptual spaces: The geometry of thought (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
  13. Gärdenfors, P., & Zenker, F. (2013). Theory change as dimensional change: Conceptual spaces applied to the dynamics of empirical theories. Synthese, 190, 1039–1058.CrossRefGoogle Scholar
  14. Huggett, N., & Wüthrich, C. (2013). Emergent spacetime and empirical (in)coherence. Studies in History and Philosophy of Modern Physics, 44, 276–285.CrossRefGoogle Scholar
  15. Hulin, M. (1980). Dimensional analysis: some suggestions for the modification and generalisation of its use in physics teaching. European Journal of Physics, 1, 44–55.Google Scholar
  16. Huntley, H. E. (1952). Dimensional analysis. London: MacDonald & Co.Google Scholar
  17. Macagno, E. O. (1971). Historico-critical review of dimensional analysis. Journal of the Franklin Institute, 292, 391–402.CrossRefGoogle Scholar
  18. Masterton, G., Zenker, F., & Gärdenfors, P. (2017). Using conceptual spaces to exhibit conceptual continuity through scientific theory change. European Journal for Philosophy of Science, 7, 127–150.CrossRefGoogle Scholar
  19. Maudlin, T. (2007). The metaphysics within physics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. McCloud, S. (1993). Understanding comics. Northampton: Tundra Publishing.Google Scholar
  21. Moon, P., & Spencer, D. E. (1949). A modern approach to ‘dimensions’. Journal of the Franklin Institute, 248, 495–521.CrossRefGoogle Scholar
  22. Moon, P., & Spencer, D. E. (1950). A geometric treatment of ‘dimensions’ in physics. Canadian Journal of Research, 28, 268–280.CrossRefGoogle Scholar
  23. Newton, I. (1697, 1999). Principia Mathematica. (I. B. Cohen & A. Whitman, Trans.). University of California Press.Google Scholar
  24. Raubal, M. (2004). Formalizing conceptual spaces. In Formal ontology in information systems, proceedings of the third international conference (FOIS 2004) (Vol. 114, pp. 153–164).Google Scholar
  25. Roche, J. J. (1998). The mathematics of measurement: A critical history. New York: Athlone.Google Scholar
  26. Schulman, J. (2010). A history of units and dimensional analysis. Unpublished manuscript. Retrieved February 25, 2019,
  27. Siano, D.B. (1985). “Orientational analysis–a supplement to dimensional analysis–I” and “Orientational analysis, tensor analysis and the group properties of the SI supplementary units–II”. Journal of the Franklin Institute, 320, 267–283 and 285–302.CrossRefGoogle Scholar
  28. Sklar, L. (1983). Prospects for a causal theory of space-time. In R. Swinburne (Ed.), Space, time, and causality (Vol. 157, pp. 45–62). Synthese Library.Google Scholar
  29. Sonin, A. A. (1997 1st ed., 2001). The physical basis of dimensional analysis (2nd ed). Cambridge, MA: MIT Press.Google Scholar
  30. Sterrett, S. G. (forthcoming). Theory of dimensions. In E. Knox & A. Wilson (Eds.), Routledge companion to the philosophy of physics. Routledge.Google Scholar
  31. Wenmackers, S., & Romeijn, J.-W. (2016). New theory for old evidence. Synthese, 193, 1225–1250.CrossRefGoogle Scholar
  32. Williams, W. (1892). On the relation of the dimensions of physical quantities to directions in space. Philosophical Magazine, 5(34), 234–271.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Logic and Philosophy of Science (CLPS), Institute of PhilosophyKU LeuvenLeuvenBelgium

Personalised recommendations