Three Levels of Naturalistic Knowledge

  • Andreas Stephens
Part of the Synthese Library book series (SYLI, volume 405)


A recent naturalistic epistemological account suggests that there are three nested basic forms of knowledge: procedural knowledge-how, conceptual knowledge-what, and propositional knowledge-that. These three knowledge-forms are grounded in cognitive neuroscience and are mapped to procedural, semantic, and episodic long-term memory respectively. This article investigates and integrates the neuroscientifically grounded account with knowledge-accounts from cognitive ethology and cognitive psychology. It is found that procedural and semantic memory, on a neuroscientific level of analysis, matches an ethological reliabilist account. This formation also matches System 1 from dual process theory on a psychological level, whereas the addition of episodic memory, on the neuroscientific level of analysis, can account for System 2 on the psychological level. It is furthermore argued that semantic memory (conceptual knowledge-what) and the cognitive ability of categorization are linked to each other, and that they can be fruitfully modeled within a conceptual spaces framework.


Naturalistic epistemology Cognitive philosophy Conceptual knowledge Knowledge-what Categorization Conceptual spaces 



I have had the great pleasure and privilege of investigating and discussing these topics with Peter Gärdenfors, and I am very grateful to Peter for sharing his vast knowledge, his eye for detail, and his positive energy. I would also like to thank Mauri Kaipainen for his generous and insightful remarks. Thanks to Trond Arild Tjøstheim for inspiring discussions. Finally I would like to thank my anonymous reviewers for comments.


  1. Allen, C., & Bekoff, M. (1995). Cognitive ethology and the intentionality of animal behaviour. Mind & Language, 10(4), 313–328.CrossRefGoogle Scholar
  2. Allen, T. A., & Fortin, N. J. (2013). The evolution of episodic memory. Proceedings of the National Academy of Sciences of the United States of America, 110(Supplement 2), 10379–10386.CrossRefGoogle Scholar
  3. Alston, W. P. (2005). Beyond “justification”: Dimensions of epistemic evaluation. Ithaca: Cornell University Press.Google Scholar
  4. Anderson, D. J., & Perona, P. (2014). Toward a science of computational ethology. Neuron, 84(1), 18–31.CrossRefGoogle Scholar
  5. Avital, E., & Jablonka, E. (2000). Animal traditions: Behavioural inheritance in evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Bago, B., & De Neys, W. (2017). Fast logic? Examining the time course assumption of dual process theory. Cognition, 158, 90–109.CrossRefGoogle Scholar
  7. Barrett, H. C. (2015). The shape of thought: How mental adaptations evolve. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Bermúdez, J. L. (2006). Knowledge, naturalism, and cognitive ethology: Kornblith’s Knowledge and its place in nature. Philosophical Studies, 127(2), 299–316.CrossRefGoogle Scholar
  9. Berntson, G. G., & Cacioppo, J. T. (2009). Preface. In G. G. Berntson & J. T. Cacioppo (Eds.), Handbook of neuroscience for the behavioral science (pp. xi–xii). New York: Wiley.CrossRefGoogle Scholar
  10. Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527–536.CrossRefGoogle Scholar
  11. Cellucci, C. (2017). Rethinking knowledge: The heuristic view (European studies in philosophy of science, Vol. 4). Springer.Google Scholar
  12. Clayton, N. S., Griffiths, D. P., Emery, N. J., & Dickinson, A. (2001). Elements of episodic–like memory in animals. Philosophical Transactions of the Royal Society, B: Biological Sciences, 356(1413), 1483–1491.CrossRefGoogle Scholar
  13. Csibra, G., & Gergely, G. (2006). Social learning and social cognition: The case for pedagogy. In Y. Munakata & M. H. Johnson (Eds.), Processes of change in brain and cognitive development. Attention and performance (Vol. XXI, pp. 249–274). Oxford: Oxford University Press.Google Scholar
  14. Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends in Cognitive Sciences, 13(4), 148–153.CrossRefGoogle Scholar
  15. Decock, L., Dietz, R., & Douven, I. (2013). Modelling comparative concepts in conceptual spaces. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New frontiers in artificial intelligence (pp. 69–86). Heidelberg: Springer.CrossRefGoogle Scholar
  16. Douven, I., Decock, L., Dietz, R., & Égré, P. (2013). Vagueness: A conceptual spaces approach. Journal of Philosophical Logic, 42(1), 137–160.CrossRefGoogle Scholar
  17. Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, MA: Harvard University Press.Google Scholar
  18. Evans, J. S. B. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7(10), 454–459.CrossRefGoogle Scholar
  19. Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8(3), 223–241.CrossRefGoogle Scholar
  20. Fantl, J. (2016). Knowledge how. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2016 Edition).
  21. Fletcher, P. C., Büchel, C., Josephs, O., Friston, K., & Dolan, R. J. (1999). Learning-related neuronal responses in prefrontal cortex studied with functional neuroimaging. Cerebral Cortex, 9(2), 168–178.CrossRefGoogle Scholar
  22. Frank, M. J., & Badre, D. (2015). How cognitive theory guides neuroscience. Cognition, 135, 14–20.CrossRefGoogle Scholar
  23. Gärdenfors, P. (1990). Induction, conceptual spaces and AI. Philosophy of Science, 57(1), 78–95.CrossRefGoogle Scholar
  24. Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: Bradford Books/MIT Press.CrossRefGoogle Scholar
  25. Gärdenfors, P. (2014). The geometry of meaning: Semantics based on conceptual spaces. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  26. Gärdenfors, P., & Högberg, A. (2017). The archaeology of teaching and the evolution of Homo docens. Current Anthropology, 58(2), 188–208.CrossRefGoogle Scholar
  27. Gärdenfors, P., & Stephens, A. (2018). Induction and knowledge-what. European Journal for Philosophy of Science, 8(3), 471–491.Google Scholar
  28. Gärdenfors, P., & Williams, M. A. (2001). Reasoning about categories in conceptual spaces. In Proceedings of the Fourteenth International Joint Conference of Artificial Intelligence (pp. 385–392). Morgan Kaufmann Publishers.Google Scholar
  29. Gergely, G., Egyed, K., & Király, I. (2007). On pedagogy. Developmental Science, 10(1), 139–146.CrossRefGoogle Scholar
  30. Goel, V., & Dolan, R. J. (2000). Anatomical segregation of component processes in an inductive interference task. Journal of Cognitive Neuroscience, 12(1), 110–119.CrossRefGoogle Scholar
  31. Goel, V., & Dolan, R. J. (2003). Explaining modulation of reasoning by belief. Cognition, 87(1), B11–B22.CrossRefGoogle Scholar
  32. Goel, V., Buchel, C., Frith, C., & Dolan, R. J. (2000). Dissociation of mechanisms underlying syllogistic reasoning. NeuroImage, 12(5), 504–514.CrossRefGoogle Scholar
  33. Goldman, A., & Beddor, B. (2016). Reliabilist epistemology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 Edition).
  34. Grossman, M., Koenig, P., DeVita, C., Glosser, G., Alsop, D., Detre, J., & Gee, J. (2002a). The neural basis for category-specific knowledge: An fMRI study. NeuroImage, 15(4), 936–948.CrossRefGoogle Scholar
  35. Grossman, M., Smith, E. E., Koenig, P., Glosser, G., DeVita, C., Moore, P., & McMillan, C. (2002b). The neural basis for categorization in semantic memory. NeuroImage, 17(3), 1549–1561.CrossRefGoogle Scholar
  36. Horst, S. (2016). Cognitive pluralism. Cambridge: The MIT Press.CrossRefGoogle Scholar
  37. Huberdeau, D. M., Krakauer, J. W., & Haith, A. M. (2015). Dual-process decomposition in human sensorimotor adaptation. Current Opinion in Neurobiology, 33, 71–77.CrossRefGoogle Scholar
  38. Irish, M., & Piguet, O. (2013). The pivotal role of semantic memory in remembering the past and imagining the future. Frontiers in Behavioral Neuroscience, 7(27), 1–11.Google Scholar
  39. Kahneman, D. (2011). Thinking fast and slow. New York: Farrar, Straus and Giroux.Google Scholar
  40. Kan, I. P., Alexander, M. P., & Verfaellie, M. (2009). Contribution of prior semantic knowledge to new episodic learning in amnesia. Journal of Cognitive Neuroscience, 21(5), 938–944.CrossRefGoogle Scholar
  41. Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (Eds.). (2013). Principles of neural science (5th ed.). New York: McGraw-Hill, Health Professions Division.Google Scholar
  42. Kim, H. (2016). Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison. Neuropsychologia, 80, 35–46.CrossRefGoogle Scholar
  43. Kornblith, H. (1993). Inductive inference and its natural ground: An essay in naturalistic epistemology. Cambridge: MIT Press.Google Scholar
  44. Kornblith, H. (2002). Knowledge and its place in nature. Oxford: Oxford University Press.CrossRefGoogle Scholar
  45. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93(3), 480–490.CrossRefGoogle Scholar
  46. Kusch, M. (2005). Beliefs, kinds and rules: A comment on Kornblith’s Knowledge and its place in nature. Philosophy and Phenomenological Research, 71(2), 411–419.CrossRefGoogle Scholar
  47. Lizardo, O., Mowry, R., Sepulvado, B., Stoltz, D. S., Taylor, M. A., Van Ness, J., & Wood, M. (2016). What are dual process models? Implications for cultural analysis in sociology. Sociological Theory, 34(4), 287–310.CrossRefGoogle Scholar
  48. Lorenz, K. (1973/1977). Behind the mirror: A search for a natural history of human knowledge. London: Methuen.Google Scholar
  49. Markie, P. (2013). Rationalism vs. empiricism. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2013 Edition).
  50. Mitchell, S. D. (2003). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83(4), 435–450.CrossRefGoogle Scholar
  52. Panoz-Brown, D., Corbin, H. E., Dalecki, S. J., Gentry, M., Brotheridge, S., Sluka, C. M., Wu, J., & Crystal, J. D. (2016). Rats remember items in context using episodic memory. Current Biology, 26(20), 2821–2826.CrossRefGoogle Scholar
  53. Pappas, G. (2017). Internalist vs. externalist conceptions of epistemic justification. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2017 Edition).
  54. Plotkin, H. C. (1993). Darwin machines and the nature of knowledge. Cambridge, MA: Harvard University Press.Google Scholar
  55. Renoult, L., Tanguay, A., Beaudry, M., Tavakoli, P., Rabipour, S., Campbell, K., Moscovitch, M., Levine, B., & Davidson, P. S. (2016). Personal semantics: Is it distinct from episodic and semantic memory? An electrophysiological study of memory for autobiographical facts and repeated events in honor of Shlomo Bentin. Neuropsychologia, 83, 242–256.CrossRefGoogle Scholar
  56. Rilling, J. K., Barks, S. K., Parr, L. A., Preuss, T. M., Faber, T. L., Pagnoni, G., Bremer, D., & Votaw, J. R. (2007). A comparison of resting-state brain activity in humans and chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 17146–17151.CrossRefGoogle Scholar
  57. Roberts, W. A. (2016). Episodic memory: Rats master multiple memories. Current Biology, 26(20), R920–R922.CrossRefGoogle Scholar
  58. Rosch, E. (1975a). Cognitive reference points. Cognitive Psychology, 7(4), 532–547.CrossRefGoogle Scholar
  59. Rosch, E. (1975b). Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104(3), 192–233.CrossRefGoogle Scholar
  60. Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11(6), 251–257.CrossRefGoogle Scholar
  61. Ryle, G. (1949). The concept of mind. London: Hutchinson.Google Scholar
  62. Samet, J., & Zaitchik, D. (2014). Innateness and contemporary theories of cognition. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2014 Edition).
  63. Serrelli, E., & Rossi, F. M. (2009). A conceptual taxonomy of adaptation in evolutionary biology. Draft paper 4 september. Milano: University of Milano Bicocca.Google Scholar
  64. Shettleworth, S. J. (2010). Cognition, evolution, and behavior. Oxford: Oxford University Press.Google Scholar
  65. Sloman, S. A. (1993). Feature-based induction. Cognitive Psychology, 25(2), 231–280.CrossRefGoogle Scholar
  66. Sloman, S. A. (2014). Two systems of reasoning: An update. In J. W. Sherman, B. Gawronski, & Y. Trope (Eds.), Dual-process theories of the social mind (pp. 69–79). New York: Guilford Press.Google Scholar
  67. Smith, E. R., & DeCoster, J. (2000). Dual-process models in social and cognitive psychology: Conceptual integration and links to underlying memory systems. Personality and Social Psychology Review, 4(2), 108–131.CrossRefGoogle Scholar
  68. Stanley, J. (2011). Know how. Oxford: Oxford University Press.CrossRefGoogle Scholar
  69. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–403). New York: Academic.Google Scholar
  70. Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26(1), 1–12.CrossRefGoogle Scholar
  71. Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1–25.CrossRefGoogle Scholar
  72. Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human. In H. Terrance & J. Metcalfe (Eds.), The missing link in cognition: Origins of self-reflective consciousness (pp. 3–56). New York: Oxford University Press.CrossRefGoogle Scholar
  73. Ullman, M. T. (2016). The declarative/procedural model: A neurobiological model of language learning, knowledge and use. In G. Hickok & S. L. Small (Eds.), The neurobiology of language (pp. 953–968). London: Academic.CrossRefGoogle Scholar
  74. Wynne, C. D. L. (2007). What are animals? Why anthropomorphism is still not a scientific approach to behavior. Comparative Cognition and Behavior Reviews, 2, 125–135.Google Scholar
  75. Yee, E., Chrysikou, E. G., & Thompson-Schill, S. L. (2014). Semantic memory. In K. Ochsner & S. Kosslyn (Eds.), The Oxford handbook of cognitive neuroscience: Volume 1, core topics (pp. 353–374). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andreas Stephens
    • 1
  1. 1.Lund UniversityLundSweden

Personalised recommendations