Advertisement

Chain Code P System Generating a Variant of the Peano Space-Filling Curve

  • Rodica CeterchiEmail author
  • Atulya K. Nagar
  • K. G. Subramanian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11399)

Abstract

Generation of the finite approximations of the well-known Hilbert and Peano space-filling curves, represented as chain-code words has been studied in an earlier work. The generation was done with parallel chain code P systems with objects as chain code words and rewriting with context-free rules in parallel. Continuing this line of work, finite approximations of a variant of the Peano curve considered by Wunderlich are generated here with parallel chain code P system. We also generate approximating polygons corresponding to the Peano curve with parallel chain code P system.

Notes

Acknowledgements

We thank the anonymous referees for their valuable suggestions and comments which greatly helped to improve the paper.

References

  1. 1.
    Ceterchi, R., Mutyam, M., Pǎun, G., Subramanian, K.G.: Array - rewriting P systems. Nat. Comput. 2, 229–249 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ceterchi, R., Nagar, A.K., Subramanian, K.G.: Approximating polygons for space-filling curves generated with P systems. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Enjoying Natural Computing. LNCS, vol. 11270, pp. 57–65. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00265-7_5CrossRefGoogle Scholar
  3. 3.
    Ceterchi, R., Subramanian, K.G., Venkat, I.: P systems with parallel rewriting for chain code picture languages. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 145–155. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20028-6_15CrossRefGoogle Scholar
  4. 4.
    Dassow, J., Habel, A., Taubenberger, S.: Chain-code pictures and collages generated by hyperedge replacement. In: Cuny, J., Ehrig, H., Engels, G., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 412–427. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61228-9_102CrossRefzbMATHGoogle Scholar
  5. 5.
    Drewes, F.: Some remarks on the generative power of collage grammars and chain-code grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 1–14. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-540-46464-8_1CrossRefzbMATHGoogle Scholar
  6. 6.
    Gheorghe, M., Pǎun, Gh., Pérez Jiménez, M.J., Rozenberg, G.: Research frontiers of membrane computing: open problems and research topics. Int. J. Found. Comput. Sci. 24(5), 547–624 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kitaev, S., Mansour, T., Seebold, P.: The Peano curve and counting occurrences of some patterns. J. Autom. Lang. Combin. 9(4), 439–455 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Maurer, H.A., Rozenberg, G., Welzl, E.: Using string languages to describe picture languages. Inf. Control 54, 155–185 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pǎun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Salomaa, A.: Formal Languages. Academic Press, London (1973)zbMATHGoogle Scholar
  11. 11.
    Sagan, H.: Space-Filling Curves. Springer, New York (1994).  https://doi.org/10.1007/978-1-4612-0871-6CrossRefzbMATHGoogle Scholar
  12. 12.
    Seebold, P.: Tag system for the Hilbert curve. Discrete Math. Theor. Comput. Sci. 9, 213–226 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Siromoney, R., Subramanian, K.G.: Space-filling curves and infinite graphs. In: Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153, pp. 380–391. Springer, Heidelberg (1983).  https://doi.org/10.1007/BFb0000120CrossRefGoogle Scholar
  14. 14.
    Subramanian, K.G.: P systems and picture languages. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 99–109. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74593-8_9CrossRefGoogle Scholar
  15. 15.
    Subramanian, K.G., Venkat, I., Pan, L.: P systems generating chain code picture languages. In: Proceedings of Asian Conference on Membrane Computing, pp. 115–123 (2012)Google Scholar
  16. 16.
    Wunderlich, W.: Über Peano-Kurven. Elem. Math. 28, 1–10 (1973)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rodica Ceterchi
    • 1
    Email author
  • Atulya K. Nagar
    • 2
  • K. G. Subramanian
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Faculty of ScienceLiverpool Hope University, Hope ParkLiverpoolUK

Personalised recommendations