Advertisement

Adaptive P Systems

  • Bogdan AmanEmail author
  • Gabriel Ciobanu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11399)

Abstract

In this paper we introduce a membrane system named adaptive P system which is able to adjust dynamically its behaviour depending on resource availability. Such a system is defined as a tree of membranes in which the objects are organized in multisets, and the rules are applied in a maximal parallel manner. We use guards on the right side of the rules in order to model the biological sensitivity to context, and in this way we are able to describe an adaptive behaviour. The Turing completeness of the adaptive P systems can be obtained only by using non-cooperative rules (with guards) working in the accepting case. Using the adaptive P systems, we provide a polynomially uniform solution for an NP-complete problem (Subset Sum) by using specific membrane computing techniques. The solution employs a linear number of resources and evolution steps.

References

  1. 1.
    Aman, B., Ciobanu, G.: Describing the immune system using enhanced mobile membranes. Electron. Notes Theor. Comput. Sci. 194(3), 5–18 (2008)CrossRefGoogle Scholar
  2. 2.
    Aman, B., Ciobanu, G.: Turing completeness using three mobile membranes. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 42–55. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03745-0_12CrossRefGoogle Scholar
  3. 3.
    Aman, B., Ciobanu, G.: Mobility in Process Calculi and Natural Computing. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24867-2CrossRefzbMATHGoogle Scholar
  4. 4.
    Aman, B., Ciobanu, G.: Solving a weak NP-complete problem in polynomial time by using mutual mobile membrane systems. Acta Informatica 48(7–8), 409–415 (2011).  https://doi.org/10.1007/s00236-011-0144-9MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aman, B., Ciobanu, G.: Adaptability in membrane computing. Analele Universităţii Bucureşti Informatică LXII(3), 5–15 (2015)Google Scholar
  6. 6.
    Aman, B., Ciobanu, G.: Efficiently solving the bin packing problem through bio-inspired mobility. Acta Informatica 54(4), 435–445 (2017).  https://doi.org/10.1007/s00236-016-0264-3MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bottoni, P., Martín-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with promoters/inhibitors. Acta Informatica 38(10), 695–720 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ciobanu, G.: Membrane computing and biologically inspired process calculi. “A.I. Cuza” University Press, Iaşi (2010)Google Scholar
  9. 9.
    Ciobanu, G.: Semantics of P systems. In: The Oxford Handbook of Membrane Computing, pp. 413–436. Oxford University Press, Oxford (2010)Google Scholar
  10. 10.
    Ciobanu, G., Todoran, E.N.: Denotational semantics of membrane systems by using complete metric spaces. Theor. Comput. Sci. 701, 85–108 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Applications of Membrane Computing. Natural Computing Series. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29937-8CrossRefGoogle Scholar
  12. 12.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  13. 13.
    Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierla, L.: Model checking kernel P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 151–172. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54239-8_12CrossRefGoogle Scholar
  14. 14.
    Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing in Systems and Synthetic Biology. ECC, vol. 7. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-03191-0CrossRefGoogle Scholar
  15. 15.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  16. 16.
    Gheorghe, M., Ipate, F.: A kernel P systems survey. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 1–9. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54239-8_1CrossRefGoogle Scholar
  17. 17.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A uniform solution to SAT using membrane creation. Theor. Comput. Sci. 371, 54–61 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hennighausen, L., Furth, P.A.: Prospects for directing temporal and spatial gene expression in transgenic animals. In: Transgenic Animals: Generation and Use, pp. 303–306. Harwood Academic Publishers (1997)Google Scholar
  19. 19.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Inform. 71, 279–308 (2006)Google Scholar
  20. 20.
    Ionescu, M., Sburlan, D.: On P systems with promoters/inhibitors. J. Univers. Comput. Sci. 10(5), 581–599 (2004)MathSciNetGoogle Scholar
  21. 21.
    Ipate, F., et al.: Kernel P Systems: Applications and Implementations. In: Yin, Z., Pan, L., Fang, X. (eds.) Proceedings of The Eighth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). Advances in Intelligent Systems and Computing, vol. 212, pp. 1081–1089. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-37502-6_126CrossRefGoogle Scholar
  22. 22.
    Kimmel, M., Axelrod, D.: Branching Processes in Biology. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-1-4939-1559-0CrossRefzbMATHGoogle Scholar
  23. 23.
    Leporati, A., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.J.: Uniform solutions to SAT and subset sum by spiking neural P systems. Nat. Comput. 8, 681–702 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lewontin, R.C.: The Triple Helix: Gene, Organism, and Environment. Harvard University Press, Cambridge (2000)zbMATHGoogle Scholar
  25. 25.
    Manca, V.: Infobiotics: Information in Biotic Systems. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36223-1CrossRefzbMATHGoogle Scholar
  26. 26.
    Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theor. Comput. Sci. 296, 295–326 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-642-56196-2CrossRefzbMATHGoogle Scholar
  28. 28.
    Păun, G., Rozenberg, G., Salomaa, A. (Eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)Google Scholar
  29. 29.
    Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Fault diagnosis of power systems using fuzzy tissue-like P systems. Integr. Comput.-Aided Eng. 24(4), 401–411 (2017)CrossRefGoogle Scholar
  30. 30.
    Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear-time solution to the knapsack problem using P systems with active membranes. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 250–268. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24619-0_19CrossRefGoogle Scholar
  31. 31.
    Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the subset-sum problem by P systems with active membranes. New Generat. Comput. 23(4), 339–356 (2005)CrossRefGoogle Scholar
  32. 32.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59126-6CrossRefzbMATHGoogle Scholar
  33. 33.
    Song, B., Song, T., Pan, L.: A time-free uniform solution to subset sum problem by tissue P systems with cell division. Math. Struct. Comput. Sci. 27, 17–32 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Suri, N., Cabri, G. (eds.): Adaptive, Dynamic, and Resilient Systems. CRC Press, Boca Raton (2014)Google Scholar
  35. 35.
    Zhang, G., Cheng, J., Wang, T., Wang, X., Zhu, J.: Membrane Computing: Theory and Applications. Science Press, Beijing (2015)Google Scholar
  36. 36.
    Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life Applications with Membrane Computing. ECC, vol. 25. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55989-6CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania
  2. 2.“A.I.Cuza” University of IaşiIaşiRomania

Personalised recommendations