Advertisement

Tissue P Systems with Point Mutation Rules

  • Artiom Alhazov
  • Rudolf FreundEmail author
  • Sergiu Ivanov
  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11399)

Abstract

We consider tissue P systems working in the sequential mode on vesicles of multisets with the very simple operations of insertion, deletion, and substitution of single objects. In a computation step, one rule is to be applied if possible, and then, in any case, the whole multiset being enclosed in a vesicle moves to one of the cells as indicated by the underlying graph structure of the system. The target cell is chosen in a non-deterministic way and does not depend on the possibly applied rule. With defining halting as reaching the final cell with a vesicle only containing terminal symbols, computational completeness can be obtained. Imposing the restriction that in each derivation step one rule has to be applied, we only reach the computational power of matrix grammars for multisets. Moreover, we also discuss variants for computations on strings. Finally, we outline a way how to “go beyond Turing” like with red-green register machines.

References

  1. 1.
    Alhazov, A., Freund, R.: P systems with toxic objects. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 99–125. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14370-5_7CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin, Yu., Verlan, S.: Sequential P systems with regular control. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp. 112–127. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36751-9_9CrossRefGoogle Scholar
  3. 3.
    Alhazov, A., Freund, R., Ivanov, S., Verlan, S.: (tissue) P systems with vesicles of multisets. In: Csuhaj-Varjú, E., Dömösi, P., Vaszil, Gy. (eds.) Proceedings 15th International Conference on Automata and Formal Languages, AFL 2017, Debrecen, Hungary, 4–6 September 2017. EPTCS, vol. 252, pp. 11–25 (2017).  https://doi.org/10.4204/EPTCS.252.6MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alhazov, A., Freund, R., Verlan, S.: P systems working in maximal variants of the set derivation mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 83–102. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54072-6_6CrossRefGoogle Scholar
  5. 5.
    Aman, B., Csuhaj-Varjú, E., Freund, R.: Red–green P automata. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 139–157. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14370-5_9CrossRefGoogle Scholar
  6. 6.
    Arroyo, F., Gómez-Canaval, S., Mitrana, V., Popescu, Ş.: On the computational power of networks of polarized evolutionary processors. Inf. Comput. 253(3), 371–380 (2017).  https://doi.org/10.1016/j.ic.2016.06.004MathSciNetCrossRefGoogle Scholar
  7. 7.
    Arroyo, F., Gómez Canaval, S., Mitrana, V., Popescu, Ş.: Networks of polarized evolutionary processors are computationally complete. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 101–112. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04921-2_8CrossRefGoogle Scholar
  8. 8.
    Calude, C.S., Păun, Gh.: Bio-steps beyond Turing. BioSystems 77(1–3), 175–194 (2004)CrossRefGoogle Scholar
  9. 9.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Networks of evolutionary processors. Acta Informatica 39(6–7), 517–529 (2003).  https://doi.org/10.1007/s00236-004-0158-7MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)CrossRefGoogle Scholar
  11. 11.
    Dassow, J., Păun, Gh.: On the power of membrane computing. J. UCS 5(2), 33–49 (1999).  https://doi.org/10.3217/jucs-005-02-0033
  12. 12.
    Fernau, H.: Unconditional transfer in regulated rewriting. Acta Informatica 34(11), 837–857 (1997).  https://doi.org/10.1007/s002360050108MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal complexity of graph-controlled, programmed, and matrix grammars. J. Autom. Lang. Comb. 12(1–2), 117–138 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Freund, R.: P systems working in the sequential mode on arrays and strings. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 188–199. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30550-7_16CrossRefzbMATHGoogle Scholar
  15. 15.
    Freund, R.: P systems working in the sequential mode on arrays and strings. Int. J. Found. Comput. Sci. 16(4), 663–682 (2005).  https://doi.org/10.1142/S0129054105003224MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Freund, R., Ibarra, O., Păun, Gh., Yen, H.C.: Matrix languages, register machines, vector addition systems. In: Third Brainstorming Week on Membrane Computing, pp. 155–167 (2005)Google Scholar
  17. 17.
    Freund, R., Ivanov, S., Staiger, L.: Going beyond turing with P automata: partial adult halting and regular observer \(\omega \)-languages. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 169–180. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21819-9_12CrossRefzbMATHGoogle Scholar
  18. 18.
    Freund, R., Ivanov, S., Staiger, L.: Going beyond Turing with P automata: regular observer \(\omega \)-languages and partial adult halting. IJUC 12(1), 51–69 (2016)zbMATHGoogle Scholar
  19. 19.
    Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20000-7_5CrossRefGoogle Scholar
  20. 20.
    Freund, R., Kogler, M., Rogozhin, Yu., Verlan, S.: Graph-controlled insertiondeletion systems. In: Proceedings of Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS 2010, Saskatoon, Canada, 8–10th August 2010, pp. 88–98 (2010).  https://doi.org/10.4204/EPTCS.31.11CrossRefGoogle Scholar
  21. 21.
    Freund, R., Oswald, M.: Tissue P systems and (mem)brane systems with mateand drip operations working on strings. Electron. Notes Theor. Comput. Sci. 171(2), 105–115 (2007).  https://doi.org/10.1016/j.entcs.2007.05.011CrossRefzbMATHGoogle Scholar
  22. 22.
    Freund, R., Oswald, M., Staiger, L.: \(\omega \)-P automata with communication rules. In: Martín-Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 203–217. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24619-0_15CrossRefGoogle Scholar
  23. 23.
    Freund, R., Păun, Gh.: How to obtain computational completeness in P systems with one catalyst. In: 2013 Proceedings of Machines, Computations and Universality, MCU 2013, Zürich, Switzerland, 9–11 September 2013, pp. 47–61 (2013).  https://doi.org/10.4204/EPTCS.128.13MathSciNetCrossRefGoogle Scholar
  24. 24.
    Freund, R., Rogojin, V., Verlan, S.: Computational completeness of networks of evolutionary processors with elementary polarizations and a small number of processors. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 140–151. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60252-3_11CrossRefzbMATHGoogle Scholar
  25. 25.
    Freund, R., Rogozhin, Yu., Verlan, S.: Generating and accepting P systems with minimal left and right insertion and deletion. Nat. Comput. 13(2), 257–268 (2014).  https://doi.org/10.1007/s11047-013-9396-3MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kudlek, M., Martín-Vide, C., Păun, Gh.: Toward a formal macroset theory. In: Calude, C.S., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2000. LNCS, vol. 2235, pp. 123–133. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45523-X_7Google Scholar
  27. 27.
    van Leeuwen, J., Wiedermann, J.: Computation as an unbounded process. Theor. Comput. Sci. 429, 202–212 (2012).  https://doi.org/10.1016/j.tcs.2011.12.040MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Martín-Vide, C., Pazos, J., Păun, Gh., Rodríguez-Patón, A.: A new class of symbolic abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45655-4_32Google Scholar
  29. 29.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  30. 30.
    Oswald, M.: P automata. Ph.D. thesis, Faculty of Computer Science, Vienna University of Technology (2003)Google Scholar
  31. 31.
    Popescu, Ş.: Networks of polarized evolutionary processors with elementary polarization of symbols. In: NCMA 2016, pp. 275–285 (2016)Google Scholar
  32. 32.
    Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000).  https://doi.org/10.1006/jcss.1999.1693MathSciNetCrossRefGoogle Scholar
  33. 33.
    Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)Google Scholar
  34. 34.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  35. 35.
    Sosík, P., Valík, O.: On evolutionary lineages of membrane systems. In: Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 67–78. Springer, Heidelberg (2006).  https://doi.org/10.1007/11603047_5CrossRefGoogle Scholar
  36. 36.
    Bulletin of the International Membrane Computing Society (IMCS). http://membranecomputing.net/IMCSBulletin/index.php
  37. 37.
    The P Systems Website. http://ppage.psystems.eu/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Artiom Alhazov
    • 1
  • Rudolf Freund
    • 2
    Email author
  • Sergiu Ivanov
    • 3
  • Sergey Verlan
    • 4
  1. 1.Institute of Mathematics and Computer ScienceChişinăuMoldova
  2. 2.Faculty of InformaticsTU WienViennaAustria
  3. 3.IBISC, Université Évry, Université Paris-SaclayÉvryFrance
  4. 4.Laboratoire d’Algorithmique, Complexité et LogiqueUniversité Paris Est CréteilCréteilFrance

Personalised recommendations