Advertisement

Testing Identifiable Kernel P Systems Using an X-Machine Approach

  • Marian GheorgheEmail author
  • Florentin Ipate
  • Raluca Lefticaru
  • Ana Turlea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11399)

Abstract

This paper presents a testing approach for kernel P systems (kP systems), based on the X-machine testing method and the concept of cover automaton. The testing methodology ensures that the implementation conforms the specifications, under certain conditions, such as the identifiability concept in the context of kernel P systems.

Keywords

Membrane computing Kernel P systems X-machines Cover automata Testing 

Notes

Acknowledgements

This work is supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0210.

References

  1. 1.
    Agrigoroaiei, O., Ciobanu, G.: Flattening the transition P systems with dissolution. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 53–64. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-18123-8_7CrossRefzbMATHGoogle Scholar
  2. 2.
    Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages. In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 43–56. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48057-9_4CrossRefzbMATHGoogle Scholar
  3. 3.
    Câmpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages. Theor. Comput. Sci. 267(1–2), 3–16 (2001).  https://doi.org/10.1016/S0304-3975(00)00292-9MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978).  https://doi.org/10.1109/TSE.1978.231496CrossRefzbMATHGoogle Scholar
  5. 5.
    Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierla, L.: Model checking kernel P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 151–172. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54239-8_12CrossRefGoogle Scholar
  6. 6.
    Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Cambridge (1974)zbMATHGoogle Scholar
  7. 7.
    Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flattening in (tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 173–188. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54239-8_13CrossRefGoogle Scholar
  8. 8.
    Gheorghe, M., Ipate, F.: Identifiable kernel P systems (2018, submitted)CrossRefGoogle Scholar
  9. 9.
    Gheorghe, M., et al.: Kernel P systems - Version I. In: Eleventh Brainstorming Week on Membrane Computing (11BWMC), pp. 97–124 (2013). http://www.gcn.us.es/files/11bwmc/097_gheorghe_ipate.pdf
  10. 10.
    Gheorghe, M., Ipate, F., Konur, S.: Testing based on identifiable P systems using cover automata and X-machines. Inf. Sci. 372, 565–578 (2016).  https://doi.org/10.1016/j.ins.2016.08.028CrossRefGoogle Scholar
  11. 11.
    Gheorghe, M., et al.: 3-Col problem modelling using simple kernel P systems. Int. J. Comput. Math. 90(4), 816–830 (2013).  https://doi.org/10.1080/00207160.2012.743712MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ipate, F.: Bounded sequence testing from deterministic finite state machines. Theor. Comput. Sci. 411(16–18), 1770–1784 (2010).  https://doi.org/10.1016/j.tcs.2010.01.030MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ipate, F., Gheorghe, M.: Finite state based testing of P systems. Nat. Comput. 8(4), 833 (2009).  https://doi.org/10.1007/s11047-008-9099-3MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ipate, F., Gheorghe, M.: Testing non-deterministic stream X-machine models and P systems. Electron. Notes Theor. Comput. Sci. 227, 113–126 (2009).  https://doi.org/10.1016/j.entcs.2008.12.107CrossRefzbMATHGoogle Scholar
  15. 15.
    Ipate, F., Gheorghe, M., Lefticaru, R.: Test generation from P systems using model checking. J. Log. Algebr. Program. 79(6), 350–362 (2010).  https://doi.org/10.1016/j.jlap.2010.03.007MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Körner, H.: A time and space efficient algorithm for minimizing cover automata for finite languages. Int. J. Found. Comput. Sci. 14(06), 1071–1086 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lefticaru, R., Gheorghe, M., Ipate, F.: An empirical evaluation of P system testing techniques. Nat. Comput. 10(1), 151–165 (2011).  https://doi.org/10.1007/s11047-010-9188-yMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Păun, G.: Computing with membranes. Technical report, Turku Centre for Computer Science (1998). http://tucs.fi/publications/view/?pub_id=tPaun98a
  19. 19.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000).  https://doi.org/10.1006/jcss.1999.1693MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    The P systems website. http://ppage.psystems.eu. Accessed 12 May 2018
  21. 21.
    Verlan, S.: Using the formal framework for P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 56–79. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54239-8_6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marian Gheorghe
    • 1
    Email author
  • Florentin Ipate
    • 2
  • Raluca Lefticaru
    • 1
    • 2
  • Ana Turlea
    • 2
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of BradfordBradfordUK
  2. 2.Department of Computer Science, Faculty of Mathematics and Computer Science and ICUBUniversity of BucharestBucharestRomania

Personalised recommendations