Advertisement

Inhibitor Binding to Carbonic Anhydrases by Isothermal Titration Calorimetry

  • Vaida Paketurytė
  • Asta Zubrienė
  • Wen-Yih Chen
  • Sandro Keller
  • Margarida Bastos
  • Matthew J. Todd
  • John E. Ladbury
  • Daumantas MatulisEmail author
Chapter

Abstract

Small-molecule drug-candidate compounds are ranked by their capability, primarily described as affinity, to bind a target protein, for example, human carbonic anhydrase (CA), a subject of this book. One of the methods of choice to determine the affinity is isothermal titration calorimetry (ITC), a biophysical technique that enables the determination of the thermodynamic parameters of binding between a protein and a small molecule, both unmodified and free in solution—the change in Gibbs energy, enthalpy, entropy, and heat capacity—through the direct measurement of the heat exchange upon binding. ITC is the only technique that directly determines the change in enthalpy upon binding at isothermal and isobaric conditions providing additional information on the mechanism of interaction and thus plays an important role in drug design. In this chapter we describe the main principles, advantages, and disadvantages of the ITC technique, as well as its use to determine the enthalpy change upon sulfonamide inhibitor binding to catalytically active CA isoforms.

Notes

Acknowledgements

D. M. thanks the Research Council of Lithuania (project TAP LLT-1/2016). M. B. thanks Fundação para a Ciência e Tecnologia (FCT-Portugal) (project UID/QUI/0081/2013 and NORTE-01-0145-FEDER-000028 (Sustainable Advanced Materials (SAM), Programa Operacional Regional do Norte (Norte 2020).

References

  1. 1.
    Leavitt, S., Freire, E.: Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 11, 560–566 (2001)CrossRefGoogle Scholar
  2. 2.
    Gurney, R.W.: Ionic Processes in Solution. McGraw-Hill Book Company, Inc, New York (1953)Google Scholar
  3. 3.
    Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959)CrossRefGoogle Scholar
  4. 4.
    Schön, A., Freire, E.: Enthalpy screen of drug candidates. Anal. Biochem. 513, 1–6 (2016)CrossRefGoogle Scholar
  5. 5.
    Chodera, J.D., Mobley, D.L.: Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu. Rev. Biophys. 42, 121–142 (2013)CrossRefGoogle Scholar
  6. 6.
    Klebe, G., Böhm, H.-J.: Energetic and entropic factors determining binding affinity in protein-ligand complexes. J. Recept. Signal Transduct. 17, 459–473 (1997)CrossRefGoogle Scholar
  7. 7.
    Bronowska, A.K.: Thermodynamics of ligand-protein interactions: implications for molecular design. In: Thermodynamics - Interaction Studies - Solids, Liquids and Gases (2011)Google Scholar
  8. 8.
    Bastos, M.: Biocalorimetry: Foundations and Contemporary Approaches. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  9. 9.
    Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)CrossRefGoogle Scholar
  10. 10.
    Chaires, J.B., et al.: Biocalorimetry. Methods 76, 1–2 (2015)CrossRefGoogle Scholar
  11. 11.
    Trani, J.M.D., et al.: Rapid measurement of inhibitor binding kinetics by isothermal titration calorimetry. Nat. Commun. 9, 893 (2018)CrossRefGoogle Scholar
  12. 12.
    Di Trani, J.M., Moitessier, N., Mittermaier, A.K.: Complete kinetic characterization of enzyme inhibition in a single isothermal titration calorimetric experiment. Anal. Chem. 90, 8430–8435 (2018)CrossRefGoogle Scholar
  13. 13.
    Frasca, V.: Using isothermal titration calorimetry techniques to quantify enzyme kinetics. Ind. Biotechnol. 12, 207–211 (2016)CrossRefGoogle Scholar
  14. 14.
    Prabhu, N.V., Sharp, K.A.: Heat capacity in proteins. Annu. Rev. Phys. Chem. 56, 521–548 (2005)CrossRefGoogle Scholar
  15. 15.
    Sigurskjold, B.W.: Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal. Biochem. 277, 260–266 (2000)CrossRefGoogle Scholar
  16. 16.
    Krainer, G., Keller, S.: Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods (San Diego, Calif.) 76, 116–123 (2015)CrossRefGoogle Scholar
  17. 17.
    Atri, M.S., Saboury, A.A., Ahmad, F.: Biological applications of isothermal titration calorimetry. Phys. Chem. Res. 3, 319–330 (2015)Google Scholar
  18. 18.
    Jayanthi, S.: The versatility of isothermal titration calorimetry in modern biology. J. Anal. Bioanal. Tech. 06, e121 (2015)CrossRefGoogle Scholar
  19. 19.
    Ladbury, J.E., Chowdhry, B.Z.: Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem. Biol. 3, 791–801 (1996)CrossRefGoogle Scholar
  20. 20.
    Falconer, R.J.: Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015: review of isothermal titration calorimetry from 2011 to 2015. J. Mol. Recognit. 29, 504–515 (2016)CrossRefGoogle Scholar
  21. 21.
    Perozzo, R., Folkers, G., Scapozza, L.: Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J. Recept. Signal Transduct. Res. 24, 1–52 (2004)CrossRefGoogle Scholar
  22. 22.
    Freyer, M.W., Lewis, E.A.: In: Methods in Cell Biology, pp. 79–113. Academic Press, Cambridge (2008)Google Scholar
  23. 23.
    Wiseman, T., Williston, S., Brandts, J.F., Lin, L.N.: Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989)CrossRefGoogle Scholar
  24. 24.
    Turnbull, W.B., Daranas, A.H.: On the value of C: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866 (2003)CrossRefGoogle Scholar
  25. 25.
    Broecker, J., Vargas, C., Keller, S.: Revisiting the optimal C value for isothermal titration calorimetry. Anal. Biochem. 418, 307–309 (2011)CrossRefGoogle Scholar
  26. 26.
    Demarse, N.A., Quinn, C.F., Eggett, D.L., Russell, D.J., Hansen, L.D.: Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels. Anal. Biochem. 417, 247–255 (2011)CrossRefGoogle Scholar
  27. 27.
    Chaires, J.B.: Calorimetry and thermodynamics in drug design. Annu. Rev. Biophys. 37, 135–151 (2008)CrossRefGoogle Scholar
  28. 28.
    Renaud, J.-P., et al.: Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 15, 679–698 (2016)CrossRefGoogle Scholar
  29. 29.
    Ladbury, J.E., Klebe, G., Freire, E.: Adding calorimetric data to decision making in lead discovery: a hot tip. Nat. Rev. Drug Discov. 9, 23–27 (2010)CrossRefGoogle Scholar
  30. 30.
    Mboge, M.Y., Mahon, B.P., McKenna, R., Frost, S.C.: Carbonic anhydrases: role in pH control and cancer. Metabolites 8, 19 (2018)CrossRefGoogle Scholar
  31. 31.
    Pastorekova, S., Zatovicova, M., Pastorek, J.: Cancer-associated carbonic anhydrases and their inhibition. Curr. Pharm. Des. 14, 685–698 (2008)CrossRefGoogle Scholar
  32. 32.
    Supuran, C.T., Winum, J.-Y.: Carbonic anhydrase IX inhibitors in cancer therapy: an update. Future Med. Chem. 7, 1407–1414 (2015)CrossRefGoogle Scholar
  33. 33.
    Maren, T.H.: Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev. 47, 595–781 (1967)CrossRefGoogle Scholar
  34. 34.
    Baker, B.M., Murphy, K.P.: Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys. J. 71, 2049–2055 (1996)CrossRefGoogle Scholar
  35. 35.
    Goldberg, R.N., Kishore, N., Lennen, R.M.: Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31, 231–370 (2002)CrossRefGoogle Scholar
  36. 36.
    Bian, X., Lockless, S.W.: Preparation to minimize buffer mismatch in isothermal titration calorimetry experiments. Anal. Chem. 88, 5549–5553 (2016)CrossRefGoogle Scholar
  37. 37.
    Williams, M.A., Daviter, T. (eds.): Protein-Ligand Interactions. Humana Press, Totowa (2013)Google Scholar
  38. 38.
    Boyce, S.E., Tellinghuisen, J., Chodera, J.D.: Avoiding accuracy-limiting pitfalls in the study of protein-ligand interactions with isothermal titration calorimetry. bioRxiv, 023796 (2015)Google Scholar
  39. 39.
    Hansen, L.D., Fellingham, G.W., Russell, D.J:. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal. Biochem. 409, 220–229 (2011)CrossRefGoogle Scholar
  40. 40.
    Kantonen, S.A., Henriksen, N.M., Gilson, M.K.: Evaluation and minimization of uncertainty in ITC binding measurements: heat error, concentration error, saturation, and stoichiometry. Biochim. Biophys. Acta (BBA) 1861, 485–498 (2017)Google Scholar
  41. 41.
    Krimmer, S.G., Klebe, G.: Thermodynamics of protein–ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data. J. Comput. Aided Mol. Des. 29, 867–883 (2015)CrossRefGoogle Scholar
  42. 42.
    Tellinghuisen, J.: In: Methods in Enzymology, pp. 245–282 (2004)Google Scholar
  43. 43.
    Tellinghuisen, J.: Volume errors in isothermal titration calorimetry. Anal. Biochem. 333, 405–406 (2004)CrossRefGoogle Scholar
  44. 44.
    Tellinghuisen, J.: Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares. Anal. Biochem. 343, 106–115 (2005)CrossRefGoogle Scholar
  45. 45.
    Tellinghuisen, J.: Optimizing experimental parameters in isothermal titration calorimetry. J. Phys. Chem. B 109, 00062, 20027–20035 (2005)CrossRefGoogle Scholar
  46. 46.
    Tellinghuisen, J.: Optimizing experimental parameters in isothermal titration calorimetry: variable volume procedures. J. Phys. Chem. B 111, 11531–11537 (2007)CrossRefGoogle Scholar
  47. 47.
    Tellinghuisen, J., Chodera, J.D.: Systematic errors in isothermal titration calorimetry: concentrations and baselines. Anal. Biochem. 414, 297–299 (2011)CrossRefGoogle Scholar
  48. 48.
    Wadsö, I., Wadsö, L.: Systematic errors in isothermal micro-and nanocalorimetry. J. Therm. Anal. Calorim. 82, 553–558 (2005)CrossRefGoogle Scholar
  49. 49.
    Tellinghuisen, J.: Calibration in isothermal titration calorimetry: heat and cell volume from heat of dilution of NaCl(Aq). Anal. Biochem. 360, 47–55 (2007)CrossRefGoogle Scholar
  50. 50.
    Baranauskienė, L., Petrikaitė, V., Matulienė, J., Matulis, D.: Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int. J. Mol. Sci. 10, 00029, 2752–2762 (2009)CrossRefGoogle Scholar
  51. 51.
    Linkuvienė, V., Krainer, G., Chen, W.-Y., Matulis, D.: Isothermal titration calorimetry for drug design: precision of the enthalpy and binding constant measurements and comparison of the instruments. Anal. Biochem. 515, 61–64 (2016)CrossRefGoogle Scholar
  52. 52.
    Brautigam, C.A., Zhao, H., Vargas, C., Keller, S., Schuck, P.: Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat. Protoc. 11, 882–894 (2016)CrossRefGoogle Scholar
  53. 53.
    Zhao, H., Piszczek, G., Schuck, P.: SEDPHAT – a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76, 137–148 (2015)CrossRefGoogle Scholar
  54. 54.
    Linkuvienė, V., et al.: Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q. Rev. Biophys. 51 (2018)Google Scholar
  55. 55.
    Nguyen, T.H., et al.: Bayesian analysis of isothermal titration calorimetry for binding thermodynamics. PLoS One 13, e0203224 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vaida Paketurytė
    • 1
  • Asta Zubrienė
    • 1
  • Wen-Yih Chen
    • 2
  • Sandro Keller
    • 3
  • Margarida Bastos
    • 4
  • Matthew J. Todd
    • 5
  • John E. Ladbury
    • 6
  • Daumantas Matulis
    • 1
    Email author
  1. 1.Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
  2. 2.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan CityTaiwan
  3. 3.Molecular BiophysicsTechnische Universität Kaiserslautern (TUK)KaiserslauternGermany
  4. 4.CIQUP, Department of Chemistry and Biochemistry, Faculty of SciencesUniversity of PortoPortoPortugal
  5. 5.Biophysical Solutions, Inc.AmblerUSA
  6. 6.Department of Molecular and Cell Biology and Astbury Center for Structural BiologyUniversity of LeedsLeedsUK

Personalised recommendations