Recent Progress in Optimization of Multiband Electrical Filters

  • Andrei Bogatyrëv
Part of the Springer Optimization and Its Applications book series (SOIA, volume 145)


The best uniform rational approximation of the sign function on two intervals was explicitly found by Russian mathematician E.I. Zolotarëv in 1877. The progress in math eventually led to the progress in technology: half a century later German electrical engineer and physicist W. Cauer on the basis of this solution has invented low- and high-pass electrical filters known today as elliptic or Cauer-Zolotarëv filters and possessing the unbeatable quality. We discuss a recently developed approach for the solution of optimization problem naturally arising in the synthesis of multi-band (analogue, digital or microwave) electrical filters. The approach is based on techniques from algebraic geometry and generalizes the effective representation of Zolotarëv fraction.



Supported by RScF grant 16-11-10349.


  1. 1.
    Achïeser, N.I.: Sur un problème de E. Zolotarëv. Bull. Acad. Sci. de l’URSS VII sér.(10), 919–931 (1929)Google Scholar
  2. 2.
    Achïeser, N.I.: Elements of the Theory of Elliptic Functions (Russian). Leningrad (1948). Translated from the second Russian edition by H.H. McFaden. Translations of Mathematical Monographs, vol. 79, viii+237 pp. American Mathematical Society, Providence, RI (1990)Google Scholar
  3. 3.
    Amer, R.A.-R., Schwarz, H.R.: Contributions to the approximation problem of electrical filters. Mitt. Inst. Angew. Math. (1964), No. 9, Birkhäuser, Basel. 99 pp. See also R.A.-R. Amer’s PHD Thesis, ETH, 1964Google Scholar
  4. 4.
    Bogatyrev, A.B.: Effective computation of Chebyshev polynomials for several intervals. Sb. Math. 190(11), 1571–1605 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bogatyrev, A.B.: Effective computation of optimal stability polynomials. Calcolo 41(4), 247–256 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bogatyrev, A.B.: Effective solution of the problem of the optimal stability polynomial. Sb. Math. 196(7), 959–981 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bogatyrev, A.B.: Ekstremal’nye mnogochleny i rimanovy poverkhnosti. MCCME, Moscow (2005). Translated under the title Extremal Polynomials and Riemann Surfaces, Springer, Berlin (2012)Google Scholar
  8. 8.
    Bogatyrev, A.B.: Chebyshëv representation of rational functions. Mat. Sb. 201(11), 19–40 (2010) [Sb. Math. (Engl. Transl.) 201(11–12), 1579–1598 (2010)]Google Scholar
  9. 9.
    Bogatyrev, A.B.: Rational functions admitting double decompositions. Trans. Moscow Math. Soc. 73, 161–165 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bogatyrev, A.B.: How many Zolotarev fractions are there? Constr. Approx. 46(1), 37–45 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bogatyrev, A.B. Goreinov, S.A., Lyamaev, S.Yu.: Analytical approach to multiband filter synthesis and comparison to other approaches. Probl. Inform. Trans. 53(3), 260–273 (2017). arXiv: 1612.01753MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cauer, W.: Theorie der linearen Wechselstromschaltungen, Bd. 1, Leipzig: Becker und Erler, 1941; Bd. 2. Akademie, Berlin (1960)Google Scholar
  13. 13.
    Chu, Q., Wu, X., Chen, F.: Novel compact tri-band bandpass filter with controllable bandwidths. IEEE Microw. Wirel. Compon. Lett. 21(12), 655–657 (2011)CrossRefGoogle Scholar
  14. 14.
    Deslandes, D., Boone, F.: An iterative design procedure for the synthesis of generalized dual-bandpass filters. Int. J. RF Microwave CAE 19(5), 607–614 (2009)CrossRefGoogle Scholar
  15. 15.
    Dubinin, V.N.: An extremal problem for the derivative of a rational function. Math. Notes 100(5), 714–71 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dubinin, V.N.: The logarithmic energy of zeros and poles of a rational function. Sib. Math. J. 57(6), 981–986 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fuchs, W.J.H.: On Chebyshëv approximation on sets with several components. In: Brannan, D.A., Clunie, J.G. (eds.) Aspects of Contemporary Complex Analysis, pp. 399–408. Academic Press, London, New York (1980)Google Scholar
  18. 18.
    Gonchar, A.A.: The problems of E.I. Zolotarëv which are connected with rational functions. Mat. Sb. 78(120), no. 4, 640–654 (1969)Google Scholar
  19. 19.
    Gutknecht, M.H., Smith, J.O., Trefethen, L.N.: The Caratheodory-Fejer method for recursive digital filter design. IEEE Trans. Acoust. Speech Signal Process. 31(6), 1417–1426 (1983)CrossRefGoogle Scholar
  20. 20.
    Lee, J., Sarabandi, K.: Design of triple-passband microwave filters using frequency transformation. IEEE Trans. Microw. Theory Tech. 56(1), 187–193 (2008)CrossRefGoogle Scholar
  21. 21.
    Macchiarella, G.: “Equi-ripple” synthesis of multiband prototype filters using a Remez-like algorithm. IEEE Microw. Wirel. Compon. Lett. 23(5), 231–233 (2013)CrossRefGoogle Scholar
  22. 22.
    Malozemov, V.N.: The synthesis problem for a multiband electrical filter. Zh. Vychisl. Mat. i Mat. Fiz. 19(3), 601–609 (1979)MathSciNetGoogle Scholar
  23. 23.
    Mohan, A., Singh, S., Biswas, A.: Generalized synthesis and design of symmetrical multiple passband filters. Prog. Electromagn. Res. B 42, 115–139 (2012)CrossRefGoogle Scholar
  24. 24.
    Remez, E.Ya.: Basics of Numerical Methods of Chebyshëv Approximation. Naukova Dumka, Kiev (1969)Google Scholar
  25. 25.
    Veidinger, L.: On the numerical determination of the best approximations in the Chebyshëv sense. Numer. Math. 2(1), 99–105 (1960)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zolotarëv, E.I.: Application of elliptic functions to questions on functions deviating least and most from zero. Zap. Imp. Akad. Nauk St. Petersburg 30(5), 1–71 (1877)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrei Bogatyrëv
    • 1
  1. 1.Institute for Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations