Assessment of Deep-Sea Faunal Communities-Indicators of Environmental Impact

  • Virginie Tilot


Our assessment of deep-sea faunal communities is based on the results of a comprehensive UNESCO/IOC baseline study of the megafaunal assemblages of the metallic nodule ecosystem of five areas within the Clarion Clipperton Zone (CCZ) of the eastern Pacific Ocean. This study serves as benchmark to interpret the structure of megafaunal populations associated with benthic biotopes in areas targeted for mining. It identifies on a large scale the variability of nodule and sediment facies and their associations with specific megafaunal communities. An appropriate set of management tools and options have been developed, in particular indicators of sensitivity to environmental changes anthropogenically or naturally induced. The general characteristics of the nodule ecosystem in the CCZ and its sensitivity to deep-sea mining are discussed from the surface to the seabed in relation to recent research on the description of water masses and dynamics and an assessment of their vulnerability. A tridimensional multiparametric rapid environmental assessment (REA) has been applied on one pilot site of the French contract area using GIS zoning, ecohydrodynamics, and sensitivity indexes.


Polymetallic nodules Deep-sea mining Clarion Clipperton Zone Deep-sea benthic communities Sensitivity indicators Environmental impact 



The research presented in this paper would not have been possible without the support of the “Institut Français de Recherche pour l’Exploitation de la Mer” (IFREMER), which made available its facilities, cruises, data, and expertise, through teams from the departments of Deep Ocean Ecosystems and Marine Geosciences, with the funding from the European Commission, DG Enterprise and Industry, the “Institut Océanographique de Paris” (France) and the National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce (USA). Later support was provided by the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO) and the Government of Flanders to update and expand the work with BIE site. Cruises and data were also been made available by SCRIPPS (Dr. George Wilson) for the ECHO I site and for Quagmire cruise, by NOAA for BIE site (Dr. Craig Smith and D. Trueblood), by the University of Hamburg, (Prof H. Thiel) for the DISCOL cruise in the Peru Basin, South Pacific. Data for the water mass analysis was available thanks to the Malaspina expedition (grant number CSD2008-00077). The author thanks the department of PATRINAT of the National Museum of Natural History (MNHN), Paris (France) and the “Instituto Español de Oceanografía,” Malaga (Spain), for their support.


  1. Aller, R. (1997). Benthic community response to temporal and spatial gradients in physical disturbance within a deep-sea western boundary region. Deep-Sea Research Part I, 44, 39–69.CrossRefGoogle Scholar
  2. Amon, D. J., Hilario, A., Martinez Arbizu, P., & Smith, C. R. (2016a). Observations of organic falls in the abyssal Clarion Clipperton zone, tropical Eastern Pacific Ocean. Marine Biodiversity. Scholar
  3. Amon, D., Ziegler, A., Dahlgren, T., Glover, A., Goineau, A., Gooday, A., Wiklund, H., & Smith, C. (2016b). First insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule región in the eastern Clarion Clipperton zone. Nature Scientific Reports, 6, 30492.
  4. Amon, D. J., Ziegler, A., Kremenetskaia, A., Mah, C., Mooi, R., O’Hara, T., Pawson, D., Roux, M., & Smith, C. (2017). Megafauna of the UKSRL exploration contract area and eastern Clarion Clipperton zone in the Pacific ocean: Echinodermata. Biodiversity Data Journal, 5, e11794. Scholar
  5. Amos, A. F., Roels, O. A., Mos, A. F., Roels, O. A., Garside, C., Malone, T. C., et al. (1977). Environmental aspects of nodule mining. In G. P. Glasby (Ed.), Marine manganese deposits (pp. 391–437). Amsterdam: Elsevier Publication Company.CrossRefGoogle Scholar
  6. Ardron, J., Gjerde, K., Pullen, S., & Tilot, V. (2008). Marine spatial planning in the high seas. Marine Policy The International Journal of Ocean Affairs, 32(5), 832–839.Google Scholar
  7. Arhan, M., Mercier, H., & Lutjeharms, J. R. E. (1999). The disparate evolution of three Agulhas rings in the south Atlantic Ocean. Journal of Geophysical Research, 104, 20,987–21,005. Scholar
  8. ASOM (Académie des Sciences d’Outre-Mer). (2010). Recommendations on the conservation and management of biodiversity of three deep-sea ecosystems targeted by mining (polymetallic nodules, cobalt rich ferro-manganese crusts and hydrothermal sulfurs). Proceedings of the international workshop organized at UNESCO, 15 December 2010.Google Scholar
  9. Baldwin, R. J., Glatts, R. C., & Smith, K. L. (1998). Particulate matter fluxes into the benthic boundary layer at a long time-series station in the abyssal NE Pacific: Composition and fluxes. Deep-Sea Research II, 45, 643–665.Google Scholar
  10. Barange, M., Field, J. G., Harris, R. P., Hofmann, E. H., Perry, R. I., & Werner, F. E. (Eds.). (2010). Marine ecosystems and global change. Oxford: Oxford University Press, 436 pp.Google Scholar
  11. Barbier, E. B., Moreno-Mateos, D., Rogers, A. D., Aronson, J., Pendleton, L., Danovaro, R., Henry, L. A., Morato, T., Ardron, J., & Van Dover, C. L. (2014). Ecology: Protect the deep sea. Nature, 505, 7484.CrossRefGoogle Scholar
  12. Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309. Scholar
  13. Beaulieu, S. E., & Smith, K. L., Jr. (1998). Phytodetritus entering the benthic boundary layer and aggregated on the sea floor in the abyssal NE Pacific: Macro- and microscopic composition. Deep-Sea Research II, 45, 781–815.CrossRefGoogle Scholar
  14. Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., et al. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444, 752–755. Scholar
  15. Berkes, F., Colding, J. C., & Folke, C. (2003). Navigating socio-ecological systems: Building resilience for complexity and change, ecology and society. Ecology and Society, 9(1), 1.Google Scholar
  16. Billett, D. S. M., Llewellyn, C., & Watson, J. (1988). Are deep-sea holothurian selective feeders? In R. D. Burke et al. (Eds.), Echinoderm biology (pp. 421–429). Rotterdam: A. Balkima Publishers.Google Scholar
  17. Block, B. A., Costa, D. P., Boehlert, G. W., & Kochevar, R. E. (2003). Revealing pelagic habitat use: The tagging of Pacific pelagics program. Oceanologica Acta, 25, 255–266.CrossRefGoogle Scholar
  18. Block, B. A., Jonsen, S. J., Winship, A. J., Schaefer, S. A., Bograd, S. J., et al. (2011). Tracking apex marine predator movements in a dynamic ocean. Nature, 475(7354), 86–90. Scholar
  19. Bluhm, H. (1997). Megafauna as indicators for the recolonization of abyssal areas impacted by physical disturbances. International symposium on environmental studies for deep-sea mining (Tokyo, Japan), 49–63.Google Scholar
  20. Bluhm, H. (2001). Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep-Sea Research II, 48, 3841–3868.CrossRefGoogle Scholar
  21. Bluhm, H., & Gebruk, A. (1999). Holothuroidea (Echinodermata) of the Peru basin. Ecological and taxonomical remarks based on underwater images. Marine Ecology, 20(2), 167–195.CrossRefGoogle Scholar
  22. Bluhm, H., Schriever, G., & Thiel, H. (1995). Megabenthic recolonization in an experimentally disturbed abyssal manganese nodule area. Marine Georesources and Geotechnology, 13, 393–416.CrossRefGoogle Scholar
  23. Bostock, H. C., Opdyke, B. N., & Williams, M. J. M. (2010). Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers. Deep-Sea Research Part I: Oceanographic Research Papers, 57(7), 847–859.Google Scholar
  24. Broecker, W. S., Takahashi, T., & Takahashi, T. (1985). Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity and initial phosphate concentration. Journal of Geophysical Research, 90, 6925–6939.CrossRefGoogle Scholar
  25. Catalá, T. S., Reche, I., Fuentes-Lema, A., Romera-Castillo, C., Nieto-Cid, M., Ortega-Retuerta, E., et al. (2015a). Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nature Communications, 6, 5986. Scholar
  26. Catalá, T. S., Reche, I., Álvarez, M., Khatiwala, S., Guallart, E. F., Benítez-Barrios, V. M., et al. (2015b). Water mass age and ageing driving chromophoric dissolved organic matter in the dark global ocean. Global Biogeochemical Cycles, 29, 1–18. Scholar
  27. Chung, J. S., Schriever, G., Sharma, R., & Yamazaki, T. (2001). Deep seabed mining environment: engineering and environment assessment. Proceedings of ISOPE-ocean mining symposium, Sczczcin, Poland (pp. 8–14).Google Scholar
  28. Cury, P., & Shannon, L. (2004). Regime shifts in upwelling ecosystems: Observed changes and possible mechanisms in the northern and southern Benguela. Progress Oceanography, 60, 223–243.CrossRefGoogle Scholar
  29. Dahlgren, T. G., Wiklund, H., Rabone, M., Amon, D. J., Ikebe, C., Watling, L., Smith, C. R., & Glover, A. G. (2016). Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton zone, Central Pacific Ocean: Cnidaria. Biodiversity Data Journal, 4, e9277. Scholar
  30. Danovaro, R. (2008). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology, 18, 1–8.CrossRefGoogle Scholar
  31. Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., et al. (2001). Marine monitoring handbook. Peterborough: Joint Nature Conservation Council, 405 pp. (ISBN 1 85716 550 0).Google Scholar
  32. Dayton, P. K., & Hessler, R. R. (1972). Role of biological disturbance in maintaining diversity in the deep-sea. Deep Sea Research, 19, 199–208.Google Scholar
  33. Dittmar, T. (2014). The biogeochemistry of marine dissolved organic matter. In D. A. Hansell & C. A. Carlson (Eds.), Academic.Google Scholar
  34. Drazen, J. C., Baldwin, R. J., & Smith, K. L., Jr. (1998). Sediment community response to a temporally varying food supply at an abyssal station in the NE Pacific. Deep-Sea Research Pt II, 45, 893–913.CrossRefGoogle Scholar
  35. Du Castel, V. (1985). Etablissement d’une carte géologique au 1/20 000e d’un domaine océanique profond dans une zone riche en nodules polymétalliques du Pacifique Nord (zone Clarion-Clipperton). Thèse de Doctorat, Université de Bretagne Occidentale, Brest, France.Google Scholar
  36. Durden, J. M., Bette, B. J., Jones, D. O. B., Huvenne, V. A., & Ruhl, H. A. (2015). Abyssal hills-hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Progress in Oceanography, 137(Part A), 209–218.CrossRefGoogle Scholar
  37. Dymond, J., & Collier, R. (1988). Biogenic particle fluxes in the equatorial Pacific: Evidence for both high and low productivity during the 1982–1983 El Niño. Global Biogeochemical Cycles, 2, 129–137.CrossRefGoogle Scholar
  38. ESCO CNRS IFREMER. (2014). Impacts environnementaux de l’exploitation des ressources minerales marines profondes. Rapport d’expertise scientifique collective. 939 pp.Google Scholar
  39. FAO Fisheries and Aquaculture. (2000). Biological characteristics of tuna. Michel Goujon and Jacek Majkowski.
  40. Feely, R. A., Sabinelli, C. L., Schlitzer, R., Bullister, J. L., Mecking, S., & Greeley, D. (2004). Remineralization in the upper water column of the Pacific Ocean. Journal of Oceanography, 60, 45–52.CrossRefGoogle Scholar
  41. Fiedler, P., & Talley, L. D. (2006). Hydrography of the eastern tropical Pacific: A review [Hidrografía del Pacífico tropical oriental: Una revisión]. Progress in Oceanography, 69, 143–180.CrossRefGoogle Scholar
  42. Fiedler, P. C., Mendelssohn, R., Palacios, D. M., & Bograd, S. J. (2013). Pycnocline variations in the eastern tropical and north Pacific, 1958–2008. Journal of Climate, 26, 583–599. Scholar
  43. Flood, R. D. (1983). Classification of sedimentary furrows and a model for furrows initiation and evolution. Geological Society of America Bulletin, 630–639.CrossRefGoogle Scholar
  44. Foell, E., Thiel, H., & Schriever, G. (1990). DISCOL: A long-term large scale disturbance-recolonisation experiment in the Abyssal Eastern Tropical Pacific Ocean. Proceedings of offshore technology conference, Houston. (pp. 497–503).Google Scholar
  45. Foley, M. M., Halpern, B. S., Micheli, F., Armsby, M. H., Caldwell, M. R., Crain, C. M., et al. (2010). Guiding ecological principles for marine spatial planning. Marine Policy, 34(5), 955–966. Scholar
  46. Friedrich, G., & Plüger, W. (1974). The distribution of manganese, iron, cobalt, nickel, copper and zinc in manganese nodules in various fields. Meerestechnik, 6, 203–206.Google Scholar
  47. Fukushima, T. (1995). Overview “Japan Deep-Sea impact experiment = JET”. Proceedings of ISOPE ocean mining symposium, Japan (pp. 47–53).Google Scholar
  48. Fukushima, T., Shirayama, Y., & Kuboki, E. (2000). The characteristics of deep-sea epifaunal megabenthos community two years after an artificial rapid deposition event. Publications of the SetoMarine Laboratory, 39, 17–27.CrossRefGoogle Scholar
  49. Gage, J. D., & Tyler, P. A. (1991). Deep-Sea biology: A natural history of organisms at the Deep-sea floor. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  50. Galeron, J., Scolan P., Fifis, A., & Sibuet, M. (2006). Spatial variability of megafaunal assemblages in deep-sea polymetallic nodule fields in the North-East Pacific. Oral presentation, 11th deep-sea biology symposium (10–14 July 2006), Southampton, UK.Google Scholar
  51. Game, E. T., Grantham, H. S., Hobday, A. J., Pressey, R. L., Lombard, A. T., Beckley, L., et al. (2009). Pelagic protected areas: The missing dimension in ocean conservation. Trends in Ecology and Evolution, 24, 360–369.CrossRefGoogle Scholar
  52. Gardner, W. D., & Sullivan, L. G. (1981). Benthic storms: Temporal variability in a deep-ocean nepheloid layer. Science, 213, 3.CrossRefGoogle Scholar
  53. Gardner, W. D., Sullivan, L. G., & Thorndike, E. M. (1984). Long-term photographic, current, and nephelometer observations of manganese nodule environments in the Pacific. Earth and Planetary Science Letters, 70, 95–109.CrossRefGoogle Scholar
  54. Georgi, D. T. (1981). On the relationships between the large-scale property variations and fine structures of the Antarctic circumpolar current. Journal of Geophysical Research, 86, 6556–6566.CrossRefGoogle Scholar
  55. GESAMP. (2016). Proceedings of the GESAMP International Workshop on the Impacts of Mine Tailings in the Marine Environment. (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP, 94, 84 pp.Google Scholar
  56. Ghosh, A. K., & Mukhopadhyay, R. (2000). Mineral wealth of the ocean. Rotterdam: A.A. Balkema.Google Scholar
  57. Gianni, M., Fuller, S., Currie, D. E. J., Schleit, K., Pike, B., Goldsworthy, L., et al. (2016) How much longer will it take? A ten-year review of the implementation of United Nations General Assembly resolutions 61/105, 64/72 and 66/68 on the management of bottom fisheries in areas beyond national jurisdiction. Deep Sea Conservation Coalition.Google Scholar
  58. Glover, A. G., & Smith, C. R. (2003). The deep-sea floor ecosystem: Current status and prospects of anthropogenic change by the year 2025. Environmental Conservation, 30(3), 219–241.CrossRefGoogle Scholar
  59. Glover, A. G., Smith, C. R., Paterson, G. I. J., Wilson, G. D. F., Hawkins, L., & Sheader, M. (2002). Polychaete species diversity in the Central Pacific abyss: Local and regional patterns and relationships with productivity. Marine Ecology Progress Series, 2002, 157–170. Scholar
  60. Glover, A. G., Gooday, A. J., Bailey, D. M., Billett, D. S. M., Chevaldonné, P., Colaço, A., et al. (2010). Temporal change in deep-sea benthic ecosystems: A review of the evidence from recent time-series studies, Chapter 1. In Advances in marine biology (Vol. 58, pp. 1–95). Burlington: Elsevier Press.Google Scholar
  61. Glover, A. G., Wiklund, H., Rabone, M., Amon, D. J., Smith, C. R., O’Hara, T., Mah, C. L., & Dahlgren, T. G. (2016). Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion Clipperton zone, Central Pacific Ocean: Echinodermata. Biodiversity Data Journal, 4, e7251. Scholar
  62. Gooday, A. J. (2002). Biological responses to seasonally varying fluxes of organic matter to the ocean floor: A review. Journal of Oceanography, 58, 305–332.CrossRefGoogle Scholar
  63. Grassle, J. F., & Sanders, H. L. (1973). Life histories and the role of disturbance. Deep-Sea Research, 20, 643–659.Google Scholar
  64. Gray, J. S. (1997). Marine biodiversity: Patterns, threats and conservation needs. Biodiversity and Conservation, 6, 153–175.CrossRefGoogle Scholar
  65. Gundersen, L. H., & Pritchard, L. (2002). Resilience and the behaviour of large-scale systems. In L. H. Gundersen, & L. Pritchard (Eds.), Island Press. Washington, USAGoogle Scholar
  66. Haedrich, R. L., & Rowe, G. T. (1977). Megafaunal biomass in the deep-sea. Nature, 269, 141–142. Scholar
  67. Halbach, P., Friedrich, G., & von Stackelberg, U. (1988). The manganese Nodule Belt of the Pacific Ocean: Geological environment, nodule formation, and mining aspects. Stuttgart: F. Enke Verlag.Halbach, P. and Manheim, F.T.Google Scholar
  68. Hannides, A. K., & Smith, C. R. (2003). The northeastern Pacific abyssal plain. In K. D. Black & G. B. Shimmield (Eds.), Biogeochemistry of marine systems, chapter 10. Oxford: Blackwell Science.Google Scholar
  69. Harada, K. & Nishida, S. (1979). Biochronology of some Pacific manganese nodules and their growth mechanism. Colloques Internationaux du CNRS, Gif-sur-Yvette: 25–30.Google Scholar
  70. Hartmann, M. (1979). Evidence for early diagenetic mobilization of trace metals from dislocation of pelagic sediments. Chemical Geology, 26, 277–293.CrossRefGoogle Scholar
  71. Heezen, B., & Hollister, C. (1971). The face of the deep (pp. 1–659). New York: Oxford University Press.Google Scholar
  72. Henry, L.-A., Moreno Navas, J., & Roberts, J. M. (2013). Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences, 10, 2737–2746.CrossRefGoogle Scholar
  73. Heye, D. (1988). The internal microstructure of manganese nodules and their relationship to the growth rate. Marine Geology, 26, 59–66.CrossRefGoogle Scholar
  74. Hoffert, M., Le Suave, R., Pautot, G., Schaaf, A., Cochonat, P., Morel, Y., & Larque, P. (1992). Caractérisation, par observations directes à l’aide du submersible « Nautile », de structures érosives actuelles des zones à nodules polymétalliques du Pacifique Nord équatorial: les “taches grises”. Compte rendu à l’Académie des Sciences.Google Scholar
  75. Hoffert, M. (2008). Les nodules polymétalliques dans les grands fonds océaniques, une extraordinaire aventure minière et scientifique sous-marine. Société géologique de France. Editions VUIBERT. ISBN 978-2-7117-7166-0. 430 pp.Google Scholar
  76. Hoffert, M. & Saget, P. (2004). Manuel d’identification des “facies-nodules” pour la zone de plongées NIXO45. Rapport Interne IFREMER, Plouzané, France.Google Scholar
  77. Hollister, C. D., & McCave, I. N. (1984). Sedimentation under deep-sea storms. Nature, 309, 220–225.CrossRefGoogle Scholar
  78. Hollister, C. D., & Nowell, A. R. M. (1991). HEBBLE epilogue. Marine Geology, 99, 445–460.CrossRefGoogle Scholar
  79. Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., et al. (2003). Climate change, human impacts and the resilience of coral reefs. Science, 301(5635), 929–933.CrossRefGoogle Scholar
  80. Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R., & Wilson, J. (2005). New paradigms for supporting the resilience of marine ecosystems. Trends in Ecology and Evolution, 20, 380–385.CrossRefGoogle Scholar
  81. Huisman, J., Thi, N. N. P., Karl, D. M., & Sommeijer, B. (2006). Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, 439, 322–325.CrossRefGoogle Scholar
  82. International Sea Bed Authority (I.S.B.A.). (2008). Technical study no. 3: Biodiversity, species ranges, and gene flow in the abyssal Pacific nodule province: predicting and managing the impacts of deep seabed mining. In C. R. Smith, J. Galeron, A. Gooday, A. Glover, H. Kitazato, L. Menot, et al. (Ed.), Edited for the International Seabed Authority of the “Kaplan Project”, 45 pp. ISBN: 978-976-95217-2-8.Google Scholar
  83. Jankowski, J., & Zielke, W. (2001). The mesoscale sediment transport due to technical activities in the deep sea. Deep-Sea Research II, 48, 3487–3521.CrossRefGoogle Scholar
  84. Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., & Martínez Arbizu, P. (2015). A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal pacific polymetallic nodule fields. PLoS One, 10, e0117790. Scholar
  85. Jones, D., Kaiser, S., Sweetman, A., Smith, C., Menot, L., Vink, et al. (2017). Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. Plos ONE., Ed by K. Vopel, 12(2), e0171750. Scholar
  86. Johnson, G. C. (2008). Quantifying Antarctic bottom water and north Atlantic deep water volumes. Journal of Geophysical Research, 113, C05027. Scholar
  87. Jumars, P. A., Mayer, L. M., Deming, J. W., Baross, J. A., & Wheatcroft, R. A. (1990). Deep-sea deposit feeding strategies suggested by environmental and feeding constraints. Philosophical Transactions of the RoyalSociety of London. A, 331, 85–101.CrossRefGoogle Scholar
  88. Karl, D. (2002). Nutrient dynamics in the deep blue sea. Trends in Microbiology, 10, 410–418.CrossRefGoogle Scholar
  89. Karl, D. M., Christian, J. R., Dore, J. E., Hebel, D. V., Letelier, R. M., Tupas, L. M., et al. (1996). Seasonal and interannual variability in primary production and particle flux at Station ALOHA. Deep-Sea Research, II(43), 539–568.CrossRefGoogle Scholar
  90. Karleskint, G., Turner, R., & Small, J. (2013). Introduction to marine biology. 4th Edition. Edition Brooks Cole. pp 529.Google Scholar
  91. Kaufman, R. S., & Smith, K. L. (1997). Activity patterns of mobile epibenthic megafauna at an abyssal site in the eastern North Pacific; results from a 17 month time-lapse photography study. Deep sea Research (Part I), 44(4), 559–579.CrossRefGoogle Scholar
  92. Kessler, W. S. (2006). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69, 181–217.CrossRefGoogle Scholar
  93. Kennett, J. P. (1982). Marine geology (pp. 1–815). Englewood Cliffs: Prentice Hall.Google Scholar
  94. Khripounoff, A., Caprais, J. C., & Crassous, P. (2006). Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5000m depth. Limnol Oceanogr, 51, 2033–2041.CrossRefGoogle Scholar
  95. Klein, H. (1987). Benthic storms, vortices and particle dispersion in the Deep West European Basin. Dtsch Hydrol Z., 49, 87–102.CrossRefGoogle Scholar
  96. Kontar, E. A., & Sokov, A. V. (1994). A benthic storm in the northeastern tropical Pacific over the fields of manganese nodules. Deep-Sea Research 1, 41(7), 1069–1089.CrossRefGoogle Scholar
  97. Kontar, E. A., & Sokov, A. V. (1997). On the benthic boundary layer’s dynamics. Journal of Marine Systems, 11, 369–385.CrossRefGoogle Scholar
  98. Kotlinski, R. (1998). The present state of knowledge on oceanic polymetallic ores as exemplified by Interoceanmetal Joint Organization’s activity. Mineralogia Polonica, 29, 77–89.Google Scholar
  99. Kotlinski, R. (1999). Metallogenesis of the world’s ocean against the background of oceanic crust evolution. Polish Geological Institute Special Papers, 4, 1–59.Google Scholar
  100. Lauerman, L. M., Smoak, J. M., Shaw, T. J., Moore, W. S., & Smith, K. L. (1997). 234 Th and 210 Pb evidence from rapid ingestion of settling particles by mobile epibenthic megafauna in the abyssal NE Pacific. Limnology and Oceanography, 42(3), 589–595.CrossRefGoogle Scholar
  101. Levin, L. A., Demaster, D. J., Mccann, L. D., & Thomas, C. L. (1986). Effects of giant protozoans (class Xenophyophorea) on deep-seamount benthos. Marine Ecology Progress Series, 29, 99–104.CrossRefGoogle Scholar
  102. Levin, L. A., Etter, R. J., Rex, M. A., Gooday, A. J., Smith, C. R., Pineda, J., et al. (2001). Environmental influences on regional deep-sea species diversity. Annual Review of Ecology and Systematics, 32, 51–93.CrossRefGoogle Scholar
  103. Levitus, S., Antonov, J. I., Boyer, T. P., & Stephens, C. (2000). Warming of the world ocean. Science, 287, 2225–2229.CrossRefGoogle Scholar
  104. Longhurst, A. R. (2007). Ecological geography of the sea (2nd ed.). Burlington: Academic. Scholar
  105. Lonsdale, P., & Southard, J. B. (1974). Experimental erosion of north Pacific red clay. Marine Geology, 17, M51–M60.CrossRefGoogle Scholar
  106. Loreau, M. (2008). Biodiversity and ecosystem functioning: The mystery of the deep sea. Current Biology, 18, R126–R128.CrossRefGoogle Scholar
  107. Lutz, M. J., Caldeira, K., Dunbar, R. B., & Behrenfeld, M. J. (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research, 112, 1–26.CrossRefGoogle Scholar
  108. Marsh, L., Huvenne, V. A., & Bones, D. (2018). Geomorphological evidence of large vertebrates interacting with the seafloor at abyssal depths in a region designated for deep-sea mining. Royal Society Open Science. Scholar
  109. Mauviel, A., & Sibuet, M. (1985). Répartition des traces animales and importance de la bioturbation. In: L. Laubier & C. Monniot (Eds), Peuplements profonds du Golfe de Gascogne. Campagne Biogas. (Ifremer publication).Google Scholar
  110. McCartney, M. S. (1982). The subtropical recirculation of mode waters. Journal of Marine Research, 40, 427–464.Google Scholar
  111. McGowan, J. A., Cayan, D. R., & Dorman, L. M. (1998). Climate–ocean variability and ecosystem response in the northeast Pacific. Science, 281, 210–217.CrossRefGoogle Scholar
  112. McMurtry, G. (2001). Authigenic deposits. In S. A. Thorpe & K. K. Turekian (Eds.), Encyclopedia of ocean sciences (pp. 201–220). London: Academic.CrossRefGoogle Scholar
  113. Menzies, R. J., George, R., & Rowe, G. T. (1975). Abyssal environment and ecology of the world oceans. New York: Wiley-Interscience. 44(1), 346.Google Scholar
  114. Montgomery, R. B. (1958). Water characteristics of Atlantic Ocean and World Ocean. Deep Sea Research, 5, 134–148.CrossRefGoogle Scholar
  115. Moreno Navas, J., Henry, L.-A., Miller, P., & Roberts, J. M. (2014). Ecohydrodynamics of cold-water coral reefs: A case study of the Mingulay reef complex (Western Scotland). PLoS One, 9(8), e106208. Scholar
  116. Morgan, C. (1991). Geographical distributions of benthic megafauna in the Clarion-Clipperton zone. NOAA report.Google Scholar
  117. Mullineaux, L. S. (1987). Organisms living on manganese nodules and crusts: Distribution and abundance at three North Pacific sites. Deep-Sea Research, 34, 165–184.CrossRefGoogle Scholar
  118. Muschenheim, D. K. (1987). The dynamics of near-bed seston flux and suspension-feeding benthos. Journal of Marine Research, 45(2), 473–496.CrossRefGoogle Scholar
  119. Nowell, A. R. M., Hollister, C. D., & Jumars, P. A. (1982). High energy benthic boundary layer experiment: HEBBLE. Eos Transactions American Geophysical Union, 63(31), 594–595.CrossRefGoogle Scholar
  120. Oebius, H. U., Becker, H. J., Rolinski, S., & Jankowski, J. (2001). Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep-Sea Research II, 48, 3453–3467.CrossRefGoogle Scholar
  121. Onken, R. (1995). The spreading of lower circumpolar deep water into the Atlantic Ocean. Journal of Physical Oceanography, 25, 3051–3063.CrossRefGoogle Scholar
  122. Ozturgut, E., Lavelle, J. W., Steffin, O., & Swift, S. A. (1980). Environmental investigation during manganese nodule mining tests in the North Equatorial Pacific, in November 1978. NOAA Tech. Memorandum ERL MESA-48, NOAA, USA, 50.Google Scholar
  123. Paterson, G. L. J., Menot, L., Colaço, A., Glover, A. G., Gollner, S., Kaiser, S., et al. (2015). Biogeography and connectivity in deep-sea habitats with mineral resource potential gap analysis. MIDAS Delivery, 4, 45. Available online at: Scholar
  124. Pennington, T. J., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., et al. (2006). Primary production in the eastern tropical Pacific: A review. Progress in Oceanography, 69, 285–317.CrossRefGoogle Scholar
  125. Pfannkuche, O., & Lochte, K. (1993). Open ocean pelago-benthic coupling: Cyanobacteria as tracers of sedimenting salp feces. Deep-Sea Research Part I, 40, 727–737.CrossRefGoogle Scholar
  126. Price, A. R. G. (2004). Rapid coastal environmental assessment. In: Standard survey methods for the red sea and Gulf of Aden. (PERSGA/GEF). PERSGA Technical Series 10. PERSGA, Jeddah, 1–2.Google Scholar
  127. Quirchmayr, R. (2015). On the existence of benthic storms. Journal of Nonlinear Mathematical Physics, 22(4), 540–544. Scholar
  128. Radziejewska, T. (1997). Immediate responses of benthic meio- and megafauna to disturbance caused by polymetallic nodule miner simulator. Proceedings of the international symposium on environmental studies for deep-sea mining, Tokyo, Japan (November 20–21), 223–235.Google Scholar
  129. Radziejewska, T. (2002). Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. International Review of Hydrobiology, 87, 459–479.CrossRefGoogle Scholar
  130. Radziejewska, T., & Stoyanova, V. (2000). Abyssal epibenthic megafauna of the Clarion-Clipperton area (NE Pacific): changes in time and space versus anthropogenic environmental disturbance. Oceanological Studies, XXIX(2), 83–101.Google Scholar
  131. Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., et al. (2011). Man and the last great wilderness: Human impact on the deep sea. PLoS One, 6, e22588. Scholar
  132. Rex, M. A. (1983). Geographic patterns of species diversity in the deep-sea benthos. In G. T. Rowe (Ed.), Deep sea biology (pp. 453–472). New York: Wiley.Google Scholar
  133. Rex, M., & Etter, R. (2010). Deep-sea biodiversity; pattern and scale. Cambridge, MA: Harvard University Press, 355 pp.Google Scholar
  134. Rogacheva, A., Gebruk, A., & Alt, C. (2012). Swimming deep-sea holothurians (Echinodermata: Holothuroidea) on the northern mid-atlantic ridge. Zoosymposia, 7, 213–224.Google Scholar
  135. Rolinski, S., Segschneider, J., & Sündermann, J. (2001). Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep-Sea Research II, 48, 3469–3485.CrossRefGoogle Scholar
  136. Rowe, G. T. (1971). Benthic biomass and surface productivity. In J. D. Costlow (Ed.), Fertility of the sea (pp. 97–122). New York: Gordon and Breach.Google Scholar
  137. Ruhl, H. A., & Smith, K. L., Jr. (2004). Shifts in Deep-Sea community structure linked to climate and food supply. Science, 305, 513–515.CrossRefGoogle Scholar
  138. Saguez, G. (1985). Etude de la morphologie, de la structure interne and de la lithologie des nodules polymétalliques de la zone Clarion-Clipperton. Relations avec l’environnement. Thèse de Doctorat, Université de Bretagne Occidentale, Brest: 1–228.Google Scholar
  139. Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., et al. (2004). Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles. Scholar
  140. Schneider, J. (1981). Manganese nodules in the deep sea. Formation, ocurrence and ecological consequencesof mining. Natur und Museum, III, 114–124.Google Scholar
  141. Schneider, D. C., Gagnon, J. M., & Gilkinson, K. D. (1987). Patchiness of epibenthic megafauna on the outer Grand Banks of Newfoundland. Marine Ecology Progress Series, 39, 1–13.CrossRefGoogle Scholar
  142. Schor, G., Falcone, E., Moretti, D., & Andrews, D. (2014). First Long-Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius cavirostris) reveal record-breaking dives. PLOS one, 9(3), e92633.CrossRefGoogle Scholar
  143. Schriever, G., Ahnert, A., Borowski, C., & Thiel, H. (1997). Results of the large scale deep-sea impact study DISCOL during 8 years of investigation. In Proceedings international symposium environmental studies for deep-sea mining (pp. 237–243). Japan: Metal Mining Agency of Japan.Google Scholar
  144. Sharma, R. (2015). Environmental issues of deep-sea mining. Global challenges, policy framework and sustainable development for mining of mineral and fossil energy resources (GCPF2015). Procedia Earth and Planetary Science, 11(2015), 204–211.CrossRefGoogle Scholar
  145. Sharma, R., & Rao, A. (1992). Geological factors associated with megabenthic activity in the Central Indian Basin. Deep-Sea Research, 39(3/4), 705–713.CrossRefGoogle Scholar
  146. Sharma, R., Nagender Nath, B., Parthiban, S., & Jai Sankar, S. (2001). Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-Sea Research Part II, 48, 3363–3380.CrossRefGoogle Scholar
  147. Shirayama, Y. (1999). Biological results of JET project: An overview. Proceedings of ISOPE ocean mining symposium, Goa, India, 1999 (pp. 185–190).Google Scholar
  148. Shor, G. (1959). Reflexion studies in the eastern equatorial Pacific. Deep-Sea Research, 5, 283–285.CrossRefGoogle Scholar
  149. Smith, C. R. (1999). The biological environment in the nodule provinces of the deep sea. In N. Odunton (Ed.), Deep-seabed polymetallic Nodule Exploration: Development of environmental guidelines (pp. 41–68). Kingston: International Seabed Authority.Google Scholar
  150. Smith, C. R., & Baco, A. R (2003). Ecology of whale falls at the deep-sea floor. In Oceanography and Marine Biology: An Annual Review. 41, 311–354Google Scholar
  151. Smith, C. R., & Demopoulos, A. (2003). Ecology of the deep. Pacific Ocean floor. In P. A. Tyler (Ed.), Ecosystems of the world, 28: Ecosystems of the deep. Ocean. Amsterdam: Elsevier.Google Scholar
  152. Smith, K. L., Jr., Kaufmann, R. S., & Wakefield, W. W. (1993). Mobile megafaunal activity monitored with a time-lapse camera in the abyssal North Pacific. Deep Sea Research Part I: Oceaonographic Research Papers, 40(11–12), 2307–2324. Scholar
  153. Smith, K. L., & Kaufmann, R. S. (1999). Long-term discrepancy between food supply and demand in the deep eastern north Pacific. Science, 284, 1174–1177.CrossRefGoogle Scholar
  154. Smith, C. R., & Rabouille, C. (2002). What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux. Limnology and Oceanography, 47, 418–426.CrossRefGoogle Scholar
  155. Smith, C. R., & Trueblood, D. D. (1991). BIE I cruise report. R/V Yuzhmorgeologiya. Funded by NOAA.Google Scholar
  156. Smith, C. R., Jumars, P. A., & DeMaster, D. J. (1986). In situ studies of megafaunal mounds indicate rapid sediment turnover and community response at the deep-sea floor. Nature, 323, 251–252.CrossRefGoogle Scholar
  157. Smith, C. R., Berelson, W., Demaster, D. J., Dobbs, F. C., Hammond, D., Hoover, D. J., et al. (1997). Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux. Deep-Sea Research, II(44), 2295–2317.CrossRefGoogle Scholar
  158. Smith, K. L., Kaufmann, R. S., Baldwin, R. J., & Carlucci, A. F. (2001). Pelagic-benthic coupling in the abyssal eastern North Pacific: An 8-year time-series study of food supply and demand. Limnology and Oceanography, 46, 543–556.CrossRefGoogle Scholar
  159. Smith, C. R., Levin, L., Koslow, A., Tyler, P., & Glover, A. (2008a). The near future of the deep sea floor ecosystems. In N. Polunin (Ed.), Aquatic ecosystems: trends and global prospects (pp. 334–349). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  160. Smith, C., Gaines, S., Watling, L., Friedlander, A., Morgan, C., Thurnherr, A. et al. (2008b). Rationale and recommendations for the establishment of preservation reference areas for nodule mining in the Clarion-Clipperton Zone. Fourteenth session. Kingston, Jamaica, 26 May–6 June 2008. Legal and Technical Commission, International Seabed Authority. Technical document no. ISBA/14/LTC/2.
  161. Smith, K. L., Ruhl, H., Bett, B., Billett, D., Lampitt, R., & Kaufmann, R. (2009). Climate, carbon cycling and deep-ocean ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(46), 19211–19218.Google Scholar
  162. Snelgrove, P. V. R., & Smith, C. R. (2002). A riot of species in an environmental calm: The paradox of the species-rich deep sea. Oceanography and Marine Biology Annual Review, 40, 311–342.Google Scholar
  163. Spiess, F. N., Hessler, R., Wilson, G., & Weydert, M. (1987). Environmental effects of deep sea dredging, NOAA report, 87–5: 1–85.Google Scholar
  164. Steneck, R. S. (2001). Functional groups. In S. A. Levin (Ed.), Encyclopedia of biodiversity (Vol. 3, pp. 121–139). San Diego: Academic Press.CrossRefGoogle Scholar
  165. Stoyanova, V. (2008). Some peculiarities of distribution patterns of polymetallic nodules associated megabenthic community”. Interoceanmetal Joint Organization. Oral Communication at the panel discussion “A proposition of strategy of conservation for a nodule ecosystem in the Clarion-Clipperton Fracture Zone, NE Pacific Ocean” organized by UNESCO/IOC on 12 Dec 2008.Google Scholar
  166. Suga, T., Takei, Y., & Hanawa, K. (1997). Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. Journal of Physical Oceanography, 27, 140–152.CrossRefGoogle Scholar
  167. Talley, L. D. (1996). Antarctic intermediate water in the South Atlantic. In G. Wefer et al. (Eds.), The South Atlantic Present and Past Circulation (pp. 219–238). Berlin/Heidelberg: Springer Verlag.Google Scholar
  168. Talley, L. D., Pickard, G., Emery, W., & Swift, J. (2011). Descriptive physical oceanography: An introduction (6th ed.). Boston: Elsevier Academic Press, 560 p.Google Scholar
  169. Thiel, H., Bluhm, H., Borowski, C., Bussau, C., Gooday, A., Maybury, C., & Schriever, G. (1992). The impact of mining on deep sea organisms. The DISCOL-Project. Ocean Challenge, 3(1), 40–46.Google Scholar
  170. Thiel, H. (2001). Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep-Sea Research Part II, 48, 3433–3452.CrossRefGoogle Scholar
  171. Thiel, H. (2003). Anthropogenic impacts on the deep-sea. In P. A. Tyler (Ed.), Ecosystems of the world: The Deep Sea. Amsterdam: Elsevier.Google Scholar
  172. Thiel, H., Schriever, G., Bussau, C., & Borowski, C. (1993). Manganese nodule crevice fauna. Deep-Sea Research, 40(2), 419–423.CrossRefGoogle Scholar
  173. Thiel, H., Schriever, G., Ahnert, A., Bluhm, H., Borowski, C., & Vopel, K. (2001). The large scale environmental impact experiment DISCOL – Reflection and foresight. Deep-Sea Research II, II48, 3869–3882.CrossRefGoogle Scholar
  174. Thurston, M. H., Rice, A. L., & Bett, B. J. (1998). Latitudinal variation in invertebrate megafaunal abundance and biomass in the North Atlantic Ocean abyss. Deep-Sea Research II, 45, 203–224.CrossRefGoogle Scholar
  175. Tilot, V. (1988). Review of Environmental Impact studies on deep-sea polymetallic mining in the Eastern Central Pacific Ocean. Contract CEE CDC/88/7730/IN/01: 1–59. Report for the Commission of the European Communities Directorate-General for Industry.Google Scholar
  176. Tilot, V. (1989). Report to EU of the german oceanographic on – A DIS-turbance and re-COL-onization experiment DISCOL II in the Peru Basin, South Pacific. Contract CEE CDC/88/7730/IN/01: 1–59. Report for the Commission of the European Communities Directorate-General for Industry.Google Scholar
  177. Tilot, V. (1990a). Report to the Scripps Institution of Oceanography on the description of megafaunal assemblages in ECHO I on basis of the analysis of photographs of the seafloor by Deep Tow cameras on pilot study site of environmental impact.Google Scholar
  178. Tilot, V. (1990b). Report on U.S. Quagmire II cruise. R/V New Horizon-RUM III cruise, 23 April–17May 1990. Funded by EU, DG for industry and NOAA. IFREMER, Brest, France.Google Scholar
  179. Tilot, V. (1991). Report on the description of megafaunal assemblages and manganese nodule coverage along transects taken during the Benthic Impact Experiment (NOAA-BIE) cruise by NOAA and SCRIPPS, USA. June 24–July 1991. Contract CEE CDC/90/7730/IN/01: 1–59. Report for the Commission of the European Communities Directorate-General for Industry.Google Scholar
  180. Tilot, V. (1992). La structure des assemblages mégabenthiques d’une province à nodules polymétalliques de l’océan Pacifique tropical Est. [PhD dissertation thesis]. [Brest (France)]: University of Bretagne Occidentale.Google Scholar
  181. Tilot, V. (1995). An ecologically important type of biological activity in a deep-sea ferro-manganese nodule environment of the tropical north east Pacific. Mesogée, 54, 101–120.Google Scholar
  182. Tilot, V. (2003). Final report on the Gulf of Aqaba Monitoring Programme (GAMP). Egyptian Environmental Agency Affairs (EEAA) and European Commission, National Parks of Egypt Protectorates Development Programmes project. SEM 04/220/027 A.Google Scholar
  183. Tilot, V. (2004). Management plan for the marine mammals sanctuary in the Mediterranean sea «Pelagos» adopted by the governments of France, Italy and Monaco in October 2004, signatories to the Agreement on the creation of a sanctuary for marine mammals concluded on 25 November 1999. 107 pp.Google Scholar
  184. Tilot, V. (2005). Eritrea marine, coastal and islands biodiversity. Lectures on marine ecology, oceanography, marine organisms, seagrass ecology, mangrove ecology, fisheries, reef fish ecology, survey technics (coral, fish and invertebrate monitoring). ECMIB-GEF/UNDP project.Google Scholar
  185. Tilot, V. (2006a). Biodiversity and distribution of the megafauna Vol 1 The polymetallic nodule ecosystem of the Eastern Equatorial Pacific Ocean. Intergovernmental Oceanographic Commission. Technical Series 69, Project Unesco COI/Min Vlanderen, Belgium.
  186. Tilot, V. (2006b). Biodiversity and distribution of the megafauna Vol 2 Annotated photographic Atlas of the echinoderms of the Clarion-Clipperton fracture zone. Intergovernmental Oceanographic Commission. Technical Series 69, Project Unesco/COI/MinVlanderen, Belgium.
  187. Tilot, V. (2006c). Megabenthic assemblages of polymetallic nodule ecosystems in the Clarion-Clipperton Fracture Zone within the abyssal tropical East Pacific. In: Proceedings of workshop on prospects for international collaboration in marine environmental research to enhance understanding of the deep-sea environment, international seabed authority, Kingston, Jamaica, Appendix A, pp. 1–14.Google Scholar
  188. Tilot, V., Leujak, W., & Ormond, R. (2008a). Monitoring of south Sinai coral reefs: Influence of natural and anthropogenic factors. Aquatic Conservation: Marine and Freshwater ecosystems, 18(7), 1109–1126.CrossRefGoogle Scholar
  189. Tilot, V., Veron, C., & Jeudy de Grissac, A. (2008b). The coral reefs of Eritrea: Little known gems. In C. Wilkinson (Ed.), Status of coral reefs of the world: 2008 (p. 78). Townsville: Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre.Google Scholar
  190. Tilot, V. (2010a). Biodiversity and distribution of faunal assemblages Vol 3 Options for the management and conservation of the nodule ecosystem in the Clarion Clipperton Fracture Zone (NE Pacific Ocean): scientific, legal and institutional aspects. Technical Series 69, Project Unesco COI/Min, Vlaanderen, Belgium.
  191. Tilot, V. (2010b). Panorama of epibenthic megafaunal communities in a deep sea nodule ecosystem of the CCZ, NE Pacific Ocean. In UNESCO/IOC, Tech. Series 69, vol 3.
  192. Tilot, V. (2011). Recommendations for the conservation and management of the biodiversity of deep sea ecosystems targeted by seabed mining (Polymetallic Nodule Deposits, Cobalt-Rich Ferromanganese Crusts and Hydrothermal Sulfides). Proceedings 40th annual conference of the Underwater Mining Institute, Hilo, Hawaii, 14–18 September, 2011.Google Scholar
  193. Tilot, V. (2013). Tools for marine spatial management in deep seas (A guide for Research, Conservation and Development Practitioners). Proceedings of the International Marine Protected Areas Congress (IMPAC3), IUCN/Agence des Aires Marines Protégées (Fr), Marseille, France, 21–27 October 2013.Google Scholar
  194. Tilot, V. (2014). An innovative multilayer rapid ecological assessment adapted to monitoring and management of Deep Sea Ecosystems. Proceedings deep sea mining summit 2014, London, UK. 17–19 March 2014.Google Scholar
  195. Tilot, V. (2016). General features of the coral reef communities of the Daymaniyat islands, Oman sultanate and designation of management indexes for Environmental Sensitivity mapping. IUCN/ROWA report.Google Scholar
  196. Tilot, V., Ormond, R., Moreno-Navas, J., & Catala, T. (2018). The benthic megafaunal assemblages of the CCZ (Eastern Pacific) and an approach to their management in the face of threatened anthropogenic impacts. Frontiers in Marine Science, 5, 7. Scholar
  197. Tkatchenko, G., & Radziejewska T. (1998). Recovery and recolonization processes in the area disturbed by a polymetallic nodule collector simulator. In: J. S. Chung, M. Olagnon, C. H. Kim, & W. Koterayama (Eds.), Proceedings of the 8th ISOPE conference, Montreal, Canada, vol. 2, pp. 282–286.Google Scholar
  198. Tkatchenko, G., Radziejewska, T., Stoyanova, V., Modlitba, I., Parizek, A., et al. (1996). Benthic impact experiment in the IOM pioneer area: Testing for effects of deep-sea disturbance. In International seminar on deep sea mining, 1997 (pp. 223–236). Tokyo, Japan: Metal Mining Agency of Japan.Google Scholar
  199. Tortell, P. (1992). Coastal zone sensitivity mapping and its role in marine environmental management. Marine Polution Bulletin, 25, 88–93.CrossRefGoogle Scholar
  200. Trueblood, D. D., Ozturgut, E., Philipchuk, M., & Gloumov, I. F. (1997). The ecological impacts of the Joint US-Russian Benthic Impact Experiment. In Proceedings of the international symposium on environmental studies for deep-sea mining (pp. 237–243). Tokyo, Japan: Metal Mining Agency of Japan.Google Scholar
  201. Tsuchiya, M. (1981). The origin of the Pacific equatorial 13°C water. Journal of Physical Oceanography, 11(6), 794–812.CrossRefGoogle Scholar
  202. Tyler, P. A. (1988). Seasonality in the deep sea. Oceanography and Marine Biology. Annual Review, 26, 227–258.Google Scholar
  203. Tyler, P. A. (2003). Ecosystems of the world. In Ecosystems of the deep oceans (Vol. 28). Amsterdam/Boston: Elsevier Press. ISBN 0 444 82619 X. 569 pp.Google Scholar
  204. Vanreusel, A., Hilario, A., Ribiero, P., Menot, L., & Martinez Arbizu, P. (2016). Threatened by mining polymetallic nodules are required to preserve abyssal epifauna. Scientific Reports, 6, 26808. Scholar
  205. Voisset, M., & Hein, P. (1978). Géochimie des nodules du Pacifique Nord-Est. Rapports scientifiques et techniques du CNEXO. Ifremer, France.Google Scholar
  206. Von Stackelberg, U., & Beiersdorf, H. (1991). The formation of manganese nodules between the Clarion and Clipperton fracture zones southeast of Hawaii. In Marine geology (Vol. 98, pp. 411–423). Englewood Cliffs: Prentice-Hall.Google Scholar
  207. Wang, Y., Li, J., Han, X., & WU, Z. (2001). The influence of terrain slope on the distribution of polymetallic nodules. Acta Oceanologica Sinica, 23(1), 65–23.Google Scholar
  208. Wilson, G. D. F. (1990). Cruise report on RUM 3-R/V New Horizon Cruise “Quagmire II”: 23 April–17 May 1990. SIO reference series, number 90–25, August 1990.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Virginie Tilot
    • 1
    • 2
  1. 1.Muséum National d’Histoire Naturelle, Patrimoine Naturel (PATRINAT)ParisFrance
  2. 2.Instituto Español de OceanografíaMalagaSpain

Personalised recommendations