Advertisement

Advances in Fs-Laser Micromachining Towards the Development of Optofluidic Devices

  • João M. MaiaEmail author
  • Vítor A. Amorim
  • D. Alexandre
  • P. V. S. Marques
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 222)

Abstract

In this chapter the developments made in femtosecond laser micromachining for applications in the fields of optofluidics and lab-on-a-chip devices are reviewed. This technology can be applied to a wide range of materials (glasses, crystals, polymers) and relies on a non-linear absorption process that leads to a permanent alteration of the material structure. This modification can induce, for instance, a smooth variation of the refractive index or generate etching selectivity, which can be used to form integrated optical circuits and microfluidic systems, respectively. Unlike conventional techniques, fs-laser micromachining offers a way to produce high-resolution three-dimensional components and integrate them in a monolithic approach. Recent advances made in two-photon polymerization have also enabled combination of polymeric structures with microfluidic channels, which can provide additional functionalities, such as fluid transport control. In particular, here it is emphasised the integration of microfluidic systems with optical layers and polymeric structures for the fabrication of miniaturized hybrid devices for chemical synthesis and biosensing.

Keywords

Microfabrication Fs-laser writing Chemical etching Two-photon polymerization Optical waveguides Microfluidics Optofluidics Optical sensing Fused silica 

Notes

Acknowledgements

Project “NanoSTIMA: Macro-to-Nano Human Sensing Towards Integrated Multimodal Health Monitoring and Analytics/NORTE-01-0145-FEDER-000016” is financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF). João M. Maia acknowledges the support of the Foundation for Science and Technology (FCT), Portugal through the Investigation Grant PD/BI/128995/2017.

References

  1. 1.
    G.M. Whitesides, Nature 442(7101), 368–373 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    P.S. Dittrich, A. Manz, Nat. Rev. Drug Discov. 5(3), 210–218 (2006)CrossRefGoogle Scholar
  3. 3.
    T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77(3), 977–1026 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442(7101), 412–418 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J. Wu, M. Gu, J. Biomed. Opt 16(8), (2011)Google Scholar
  6. 6.
    K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, Opt. Express 15(12), 7610–7615 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S. Suzuki, A. Sugita, NTT Tech. Rev. 3(7), 12–16 (2005)Google Scholar
  8. 8.
    D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70(23), 4974–4984 (1998)CrossRefGoogle Scholar
  9. 9.
    H. Becker, L.E. Locascio, Talanta 56(2), 267–287 (2002)CrossRefGoogle Scholar
  10. 10.
    D. Tan, K.N. Sharafudeen, Y. Yue, J. Qiu, Prog. Mater Sci. 75, 154–228 (2016)CrossRefGoogle Scholar
  11. 11.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21(21), 1729–1731 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    J. Xu, D. Wu, Y. Hanada, C. Chen, S. Wu, Y. Cheng, K. Sugioka, K. Midorikawa, Lab Chip 13(23), 4608–4616 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26(5), 277–279 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, K. Midorikawa, Lab Chip 14(18), 3447–3458 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Bellini, K.C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, R. Osellame, Opt. Express 18(5), 4679–4688 (2010).  https://doi.org/10.1364/OE.18.004679ADSCrossRefGoogle Scholar
  16. 16.
    A. Crespi, Y. Gu, B. Ngamsom, H.J.W.M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H.H. Van Den Vlekkert, P. Watts, G. Cerullo, R. Osellame, Lab Chip 10(9), 1167–1173 (2010).  https://doi.org/10.1039/B920062BCrossRefGoogle Scholar
  17. 17.
    S. Ho, P.R. Herman, J.S. Aitchison, Appl. Phys. A 106(1), 5–13 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bull. 31(8), 620–625 (2006)CrossRefGoogle Scholar
  19. 19.
    J.W. Chan, T. Huser, S. Risbud, D.M. Krol, Opt. Lett. 26(21), 1726–1728 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    A. Agarwal, M. Tomozawa, J. Non-Cryst. Solids 209(1–2), 166–174 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    K. Hirao, K. Miura, J. Non-Cryst. Solids 239(1–3), 91–95 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, H. Hosoya, Photon processing in microelectronics and photonics III, in Proceedings of SPIE, vol. 5339, 15 July 2004Google Scholar
  23. 23.
    Y. Nasu, M. Kohtoku, Y. Hibino, Opt. Lett. 30(7), 723–725 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    R.R. Thomson, H.T. Bookey, N.D. Psaila, A. Fender, S. Campbell, W.N. MacPherson, J.S. Barton, D.T. Reid, A.K. Kar, Opt. Express 15(18), 11691–11697 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    S.M. Eaton, H. Zhang, P.R. Herman, Opt. Express 13, 4708–4716 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    M. Ams, G.D. Marshall, D.J. Spence, M.J. Withford, Opt. Express 13(15), 5676–5681 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    S.M. Eaton, M.L. Ng, R. Osellame, P.R. Herman, J. Non-Cryst. Solids 357(11–13), 2387–2391 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    M. Ams, P. Dekker, S. Gross, M.J. Withford, Nanophotonics (to be published) (2017)Google Scholar
  29. 29.
    J.R. Grenier, L.A. Fernandes, J.S. Aitchison, P.V.S. Marques, P.R. Herman, Opt. Lett. 37(12), 2289–2291 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    P. Zeil, C. Voigtländer, J. Thomas, D. Richter, S. Nolte, Opt. Lett. 38(13), 2354–2356 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    L.A. Fernandes, J.R. Grenier, P.R. Herman, J.S. Aitchison, P.V.S. Marques, Opt. Express 19(19), 18294–18301 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    I.-B. Sohn, M.-S. Lee, J. Chung, IEEE Photon. Technol. Lett. 17(11), 2349–2351 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    J. Liu, Z. Zhang, S. Chang, C. Flueraru, C.P. Grover, Opt. Commun. 253(4–6), 315–319 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    V.A. Amorim, J.M. Maia, D. Alexandre, P.V.S. Marques, I.E.E.E. Photon, Technol. Lett 29(7), 619–622 (2017)CrossRefGoogle Scholar
  35. 35.
    K. Suzuki, V. Sharma, J.G. Fujimoto, E.P. Ippen, Y. Nasu, Opt. Express 14(6), 2335–2343 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    W.-J. Chen, S.M. Eaton, H. Zhang, P.R. Herman, Opt. Express 16(15), 11470–11480 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    W. Watanabe, Y. Note, K. Itoh, Opt. Lett. 30(21), 2888–2890 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, Chin. Phys. Lett. 25(7), 2500–2503 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    V.A. Amorim, J.M. Maia, D. Alexandre, P.V.S. Marques, J. Lightwave Technol. 35(17), 3615–3621 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    G. Douglass, F. Dreisow, S. Gross, S. Nolte, M.J. Withford, Rapid prototyping of arrayed waveguide gratings, Paper presented at Photonic and Fiber Technology 2016, Sydney, Australia, 5–8 Sept 2016Google Scholar
  41. 41.
    S.-L. Li, P. Han, M. Shi, Y. Yao, B. Hu, M. Wang, X. Zhu, Opt. Express 19(24), 23958–23964 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    J. Burghoff, S. Nolte, A. Tünnermann, Appl. Phys. A 89(1), 127–132 (2007).  https://doi.org/10.1007/s00339-007-4152-0ADSCrossRefGoogle Scholar
  43. 43.
    A.G. Okhrimchuk, A.V. Shestakov, I. Khrushchev, J. Mitchell, Opt. Lett. 30(17), 2248–2250 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    M.-M. Dong, C.-W. Wang, Z.-X. Wu, Y. Zhang, H,-H. Pan, Q.-Z. Zhao, Opt. Express 21(13), 15522–15529 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, G. Cerullo, Appl. Phys. A 93(1), 17–26 (2008)CrossRefGoogle Scholar
  46. 46.
    D. Choudhury, J.R. Macdonald, A.K. Kar, Laser Photon. Rev. 8(6), 827–846 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    C. Zhang, N. Dong, J. Yang, F. Chen, J.R.V. De Aldana, Q. Lu, Opt. Express 19(13), 12503–12508 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    G. Palmer, S. Gross, A. Fuerbach, D.G. Lancaster, M.J. Withford, Opt. Express 21(14), 17413–17420 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, P. Laporta, Opt. Express 15(6), 3190–3194 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    B. McMillen, B. Zhang, K.P. Chen, A. Benayas, D. Jaque, Opt. Lett. 37(9), 1418–1420 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    M.A. Hughes, W. Yang, D.W. Hewak, J. Opt. Soc. Am. B 26(7), 1370–1378 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    N.D. Psaila, R.R. Thomson, H.T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A.K. Kar, Opt. Express 15(24), 15776–15781 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, I.E.E.E. Photon, Technol. Lett. 19(12), 892–894 (2007)CrossRefGoogle Scholar
  54. 54.
    W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, C. Denz, Opt. Express 20(24), 26922–26928 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    R. Taylor, C. Hnatovsky, E. Simova, Laser Photon. Rev 2(1–2), 26–46 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    A.A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, J.R. Mabesa Jr., Photon processing in microelectronics and photonics III, in Proceedings of SPIE, vol. 5339, 15 July 2004Google Scholar
  57. 57.
    B. Fisette, M. Meunier, Photonics north 2004: photonic applications in astronomy, biomedicine, imaging, materials processing, and education, in Proceedings of SPIE, vol. 5578, 9 Dec 2004Google Scholar
  58. 58.
    K. Sugioka, Y. Cheng, K. Midorikawa, Appl. Phys. A 81(1), 1–10 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, H. Misawa, Appl. Phys. A 84(1–2), 99–102 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    D. Wortmann, J. Gottmann, N. Brandt, H. Horn-Solle, Opt. Express 16(3), 1517–1522 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, A.K. Kar, Appl. Phys. Lett 103(4) (2013)Google Scholar
  62. 62.
    Y. Bellouard, A. Said, M. Dugan, P. Bado, Opt. Express 12(10), 2120–2129 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    Y. Bellouard, A.A. Said, M. Dugan, P. Bado, Commercial and biomedical applications of ultrafast lasers VI, in Proceedings of SPIE, vol. 6108, 28 Feb 2006Google Scholar
  64. 64.
    C. Hnatovsky, R.S. Taylor, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Opt. Lett. 30(14), 1867–1869 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    J.M. Maia, V.A. Amorim, D. Alexandre, P.V.S. Marques, in Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS 2017), 27 Feb–1 Mar 2017Google Scholar
  66. 66.
    A. Champion, M. Beresna, P. Kazansky, Y. Bellouard, Opt. Express 21(21), 24942–24951 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    F. He, J. Lin, Y. Cheng, Appl. Phys. B 105(2), 379–384 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    K.C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, R. Osellame, Opt. Express 17(10), 8685–8695 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    S. Kiyama, S. Matsuo, S. Hashimoto, Y. Morihira, J. Phys. Chem. C 113(27), 11560–11566 (2009)CrossRefGoogle Scholar
  70. 70.
    Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche, Microelectron. Eng. 132, 156–175 (2015)CrossRefGoogle Scholar
  71. 71.
    M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, K. Midorikawa, Appl. Phys. A 76(5), 857–860 (2003)ADSCrossRefGoogle Scholar
  72. 72.
    K. Liu, Q. Yang, S. He, F. Chen, Y. Zhao, X. Fan, L. Li, C. Shan, H. Bian, Microsyst. Technol. 19(7), 1033–1040 (2013)CrossRefGoogle Scholar
  73. 73.
    Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y. Jiang, Opt. Lett. 26(23), 1912–1914 (2001)ADSCrossRefGoogle Scholar
  74. 74.
    Y. Li, S. Qu, Curr. Appl. Phys. 13(7), 1292–1295 (2013)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    K.-S. Lee, R.H. Kim, D.-Y. Yang, S.H. Park, Prog. Polym. Sci. 33(6), 631–681 (2008)CrossRefGoogle Scholar
  76. 76.
    J. Wang, Y. He, H. Xia, L.-G. Niu, R. Zhang, Q.-D. Chen, Y. Zhang, Y.-F. Li, S.-J. Zeng, J.-H. Qin, B.-C. Lin, H.-B. Sun, Lab Chip 10(15), 1993–1996 (2010).  https://doi.org/10.1039/C003264FCrossRefGoogle Scholar
  77. 77.
    L. Amato, Y. Gu, N. Bellini, S.M. Eaton, G. Cerullo, R. Osellame, Lab Chip 12(6), 1135–1142 (2012)CrossRefGoogle Scholar
  78. 78.
    T.W. Lim, Y. Son, Y.J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, D.-P. Kim, Lab Chip 11(1), 100–103 (2011).  https://doi.org/10.1039/C005325MCrossRefGoogle Scholar
  79. 79.
    D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, K. Sugioka, Laser Photon. Rev. 8(3), 458–467 (2014)ADSCrossRefGoogle Scholar
  80. 80.
    R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, A.A. Said, Lab Chip 6(3), 422–426 (2006).  https://doi.org/10.1039/B512576FCrossRefGoogle Scholar
  81. 81.
    D.J. Hwang, M. Kim, K. Hiromatsu, H. Jeon, C.P. Grigoropoulos, Appl. Phys. A 96(2), 385–390 (2009).  https://doi.org/10.1007/s00339-009-5210-6ADSCrossRefGoogle Scholar
  82. 82.
    M. Kim, D.J. Hwang, H. Jeon, K. Hiromatsu, C.P. Grigoropoulos, Lab Chip 9(2), 311–318 (2009).  https://doi.org/10.1039/B808366ECrossRefGoogle Scholar
  83. 83.
    F. Bragheri, L. Ferrara, N. Bellini, K.C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, I. Cristiani, J. Biophotonics 3(4), 234–243 (2010)CrossRefGoogle Scholar
  84. 84.
    F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, R. Osellame, Lab Chip 12(19), 3779–3784 (2012).  https://doi.org/10.1039/c2lc40705aCrossRefGoogle Scholar
  85. 85.
    T. Yang, P. Paiè, G. Nava, F. Bragheri, R.M. Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, I. Cristiani, Lab Chip 15(5), 1262–1266 (2015)CrossRefGoogle Scholar
  86. 86.
    R.M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. Van Den Vlekkert, R. Ramponi, M. Pollnau, G. Cerullo, Lab Chip 9(1), 91–96 (2009)CrossRefGoogle Scholar
  87. 87.
    C. Dongre, R. Dekker, H.J.W.M. Hoekstra, M. Pollnau, R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, R. Van Weeghel, G.A.J. Besselink, H.H. Van Den Vlekkert, Opt. Lett. 33(21), 2503–2505 (2008).  https://doi.org/10.1364/OL.33.002503ADSCrossRefGoogle Scholar
  88. 88.
    C. Dongre, J. Van Weerd, G.A.J. Besselink, R. Van Weeghel, R.M. Vazquez, R. Osellame, G. Cerullo, M. Cretich, M. Chiari, H.J.W.M. Hoekstra, M. Pollnau, Electrophoresis 31(15), 2584–2588 (2010)CrossRefGoogle Scholar
  89. 89.
    V. Maselli, J.R. Grenier, S. Ho, P.R. Herman, Opt. Express 17(14), 11719–11729 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    J.M. Maia, V.A. Amorim, D. Alexandre, P.V.S. Marques, J. Lightwave Technol. 35(11), 2291–2298 (2017)ADSCrossRefGoogle Scholar
  91. 91.
    Y. Hanada, K. Sugioka, K. Midorikawa, Lab Chip 12(19), 3688–3693 (2012).  https://doi.org/10.1039/C2LC40377CCrossRefGoogle Scholar
  92. 92.
    J. Lin, S. Yu, Y. Ma, W. Fang, F. He, L. Qiao, L. Tong, Y. Cheng, Z. Xu, Opt. Express 20(9), 10212–10217 (2012).  https://doi.org/10.1364/OE.20.010212ADSCrossRefGoogle Scholar
  93. 93.
    Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, Q. Gong, Appl. Phys. Lett 97(21) (2010)Google Scholar
  94. 94.
    T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. Von Freymann, T. Mappes, H. Kalt, Opt. Express 19(12), 11451–11456 (2011)ADSCrossRefGoogle Scholar
  95. 95.
    J. Song, J. Lin, J. Tang, Y. Liao, F. He, Z. Wang, L. Qiao, K. Sugioka, Y. Cheng, Opt. Express 22(12), 14792–14802 (2014).  https://doi.org/10.1364/OE.22.014792ADSCrossRefGoogle Scholar
  96. 96.
    J.-F. Ku, Q.-D. Chen, R. Zhang, H.-B. Sun, Opt. Lett. 36(15), 2871–2873 (2011)ADSCrossRefGoogle Scholar
  97. 97.
    J. Lin, Y. Xu, J. Song, B. Zeng, F. He, H. Xu, K. Sugioka, W. Fang, Y. Cheng, Opt. Lett. 38(9), 1458–1460 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, H.-B. Sun, Lab Chip 11(19), 3347–3351 (2011).  https://doi.org/10.1039/C1LC20397ECrossRefGoogle Scholar
  99. 99.
    M. Haque, N.S. Zacharia, S. Ho, P.R. Herman, Biomed. Opt. Express 4(8), 1472–1485 (2013).  https://doi.org/10.1364/BOE.4.001472CrossRefGoogle Scholar
  100. 100.
    S. Ho, M. Haque, P.R. Herman, J.S. Aitchison, Opt. Lett. 37(10), 1682–1684 (2012).  https://doi.org/10.1364/OL.37.001682ADSCrossRefGoogle Scholar
  101. 101.
    F. Sima, J. Xu, D. Wu, K. Sugioka, Micromachines 8(2), (2017)CrossRefGoogle Scholar
  102. 102.
    D. Huh, G.A. Hamilton, D.E. Ingber, Trends Cell Biol. 21(12), 745–754 (2011)CrossRefGoogle Scholar
  103. 103.
    D.J. Beebe, D.E. Ingber, J. Den Toonder, Lab Chip 13(18), 3447–3448 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • João M. Maia
    • 1
    • 3
    Email author
  • Vítor A. Amorim
    • 1
    • 3
  • D. Alexandre
    • 2
    • 3
  • P. V. S. Marques
    • 1
    • 3
  1. 1.Department of Physics and AstronomyFaculty of Sciences of University of PortoPortoPortugal
  2. 2.Department of PhysicsUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  3. 3.CAP - Centre for Applied PhotonicsINESC TECPortoPortugal

Personalised recommendations