Advertisement

Efficient Fully-Leakage Resilient One-More Signature Schemes

  • Antonio FaonioEmail author
Conference paper
  • 513 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11405)

Abstract

In a recent paper Faonio, Nielsen and Venturi (ICALP 2015) gave new constructions of leakage-resilient signature schemes. The signature schemes proposed remain unforgeable against an adversary leaking arbitrary information on the entire state of the signer, including the random coins of the signing algorithm. The main feature of their signature schemes is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible. The notion, put forward by Nielsen, Venturi, and Zottarel (PKC 2014), defines a slack parameter \(\gamma \) which, roughly speaking, describes how gracefully the security degrades. Unfortunately, the standard-model signature scheme of Faonio, Nielsen and Venturi has a slack parameter that depends on the number of signatures queried by the adversary.

In this paper we show two new constructions in the standard model where the above limitation is avoided. Specifically, the first scheme achieves slack parameter \(O(1/\lambda )\) where \(\lambda \) is the security parameter and it is based on standard number theoretic assumptions, the second scheme achieves optimal slack parameter (i.e. \(\gamma =1\)) and it is based on knowledge of the exponent assumptions. Our constructions are efficient and have leakage rate \(1-o(1)\), most notably our second construction has signature size of only 8 group elements which makes it the leakage-resilient signature scheme with the shortest signature size known to the best of our knowledge.

Keywords

Signature scheme Leakage resilience Efficient scheme Knowledge assumptions 

Notes

Acknowledgements

Research leading to these results has been supported by the Spanish Ministry of Economy under the projects Dedetis (ref. TIN2015-70713-R) and Datamantium (ref. RTC-2016-4930-7), and by the Madrid Regional Government under project N-Greens (ref. S2013/ICE-2731).

I would like to thank Dario Fiore for a conversation we had on his paper [16]. Also, I would like to thank Dennis Hofheinz which suggested to me the paper of Fujisaki on ABM Encryption.

References

  1. 1.
    Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_7CrossRefGoogle Scholar
  2. 2.
    Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_6CrossRefzbMATHGoogle Scholar
  3. 3.
    Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_3CrossRefzbMATHGoogle Scholar
  4. 4.
    Ateniese, G., Faonio, A., Kamara, S.: Leakage-resilient identification schemes from zero-knowledge proofs of storage. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 311–328. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27239-9_19CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_17CrossRefGoogle Scholar
  6. 6.
    Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions. In: 46th ACM STOC, pp. 505–514 (2014)Google Scholar
  7. 7.
    Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_7CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: 51st FOCS, pp. 501–510 (2010)Google Scholar
  9. 9.
    Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_36CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: 51st FOCS, pp. 511–520 (2010)Google Scholar
  11. 11.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  12. 12.
    Faonio, A.: Efficient fully-leakage resilient one-more signature schemes. Cryptology ePrint Archive, Report 2018/1140 (2018). https://eprint.iacr.org/2018/1140
  13. 13.
    Faonio, A., Nielsen, J.B.: Fully leakage-resilient codes. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 333–358. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_14CrossRefGoogle Scholar
  14. 14.
    Faonio, A., Nielsen, J.B., Venturi, D.: Mind your coins: fully leakage-resilient signatures with graceful degradation. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 456–468. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47672-7_37CrossRefGoogle Scholar
  15. 15.
    Faonio, A., Nielsen, J.B., Venturi, D.: Fully leakage-resilient signatures revisited: graceful degradation, noisy leakage, and construction in the bounded-retrieval model. Theoret. Comput. Sci. 660, 23–56 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fiore, D., Nitulescu, A.: On the (in)security of SNARKs in the presence of oracles. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 108–138. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_5CrossRefzbMATHGoogle Scholar
  17. 17.
    Fujisaki, E.: All-but-many encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 426–447. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_23CrossRefGoogle Scholar
  18. 18.
    Fujisaki, E.: All-but-many encryption. J. Cryptol. 31(1), 226–275 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44709-1_21CrossRefGoogle Scholar
  20. 20.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_37CrossRefGoogle Scholar
  21. 21.
    Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_19CrossRefGoogle Scholar
  22. 22.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  23. 23.
    Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_14CrossRefGoogle Scholar
  24. 24.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_1CrossRefGoogle Scholar
  25. 25.
    Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_4CrossRefGoogle Scholar
  26. 26.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_9CrossRefGoogle Scholar
  27. 27.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  28. 28.
    Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_7CrossRefGoogle Scholar
  29. 29.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_2CrossRefGoogle Scholar
  30. 30.
    Nielsen, J.B., Venturi, D., Zottarel, A.: Leakage-resilient signatures with graceful degradation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 362–379. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_21CrossRefGoogle Scholar
  31. 31.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252 (2013)Google Scholar
  32. 32.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IMDEA Software InstituteMadridSpain

Personalised recommendations