Advertisement

Diversity-Indicator Based Multi-Objective Evolutionary Algorithm: DI-MOEA

  • Yali WangEmail author
  • Michael Emmerich
  • André Deutz
  • Thomas Bäck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11411)

Abstract

In this paper we propose a Diversity-Indicator based Multi-Objective Evolutionary Algorithm (DI-MOEA) for fast computation of evenly spread Pareto front approximations. Indicator-based optimization has been a successful principle for multi-objective evolutionary optimization algorithm (MOEA) design. The idea is to guide the search for approximating the Pareto front by a performance indicator. Ideally, the indicator captures both convergence to the Pareto front and a high diversity, and it does not require a priori knowledge of the Pareto front shape and location. It is, however, so far difficult to define indicators that scale well in computation time for high dimensional objective spaces, and that distribute points evenly on the Pareto front. Moreover, the behavior of commonly applied indicators depends on additional information, such as reference points or sets. The proposed DI-MOEA adopts a hybrid search scheme for combining the advantages of Pareto dominance-based approaches to ensure fast convergence to the Pareto front, with indicator based approaches to ensure convergence to an evenly distributed, diverse set. In addition, it avoids the use of complex structure and parameters in decomposition-based approaches. The Euclidean distance-based geometric mean gap is used as diversity indicator. Experimental results show that the new algorithm can find uniformly spaced Pareto fronts without the involvement of any reference points or sets. Most importantly, our algorithm performs well on both the hypervolume indicator and IGD when comparing with state-of-the-art MOEAs (NSGA-II, SMS-EMOA, MOEA/D and NSGA-III).

Keywords

Multi-objective optimization Diversity indicator Evolutionary Algorithm Indicator-based MOEAs 

References

  1. 1.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefGoogle Scholar
  2. 2.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)CrossRefGoogle Scholar
  4. 4.
    Emmerich, M.T.M., Deutz, A.H., Kruisselbrink, J.W.: On quality indicators for black-box level set approximation. In: Tantar, E., et al. (eds.) EVOLVE - A Bridge Between Probability, Set Oriented Numerics and Evolutionary Computation. SCI, vol. 447, pp. 157–185. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-32726-1_4CrossRefzbMATHGoogle Scholar
  5. 5.
    Ghosh, J.B.: Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19(4), 175–181 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Giagkiozis, I., Purshouse, R.C., Fleming, P.J.: Generalized decomposition and cross entropy methods for many-objective optimization. Inf. Sci. 282, 363–387 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hajela, P., Lin, C.-Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4(2), 99–107 (1992)CrossRefGoogle Scholar
  8. 8.
    Hanne, T.: On the convergence of multiobjective evolutionary algorithms. Eur. J. Oper. Res. 117(3), 553–564 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, L.-Y., Basto-Fernandes, V., Yevseyeva, I., Kok, J., Emmerich, M.: Indicator-based evolutionary level set approximation: mixed mutation strategy and extended analysis. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 146–159. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59740-9_15CrossRefGoogle Scholar
  10. 10.
    Ulrich, T., Bader, J., Thiele, L.: Defining and optimizing indicator-based diversity measures in multiobjective search. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 707–717. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15844-5_71CrossRefGoogle Scholar
  11. 11.
    Vaidya, P.M.: An o(n log n) algorithm for the all-nearest-neighbors problem. Discrete Comput. Geom. 4(2), 101–115 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wessing, S.: Two-stage methods for multimodal optimization. Ph.D. thesis. Universitätsbibliothek Dortmund (2015)Google Scholar
  13. 13.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  14. 14.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30217-9_84CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yali Wang
    • 1
    Email author
  • Michael Emmerich
    • 1
  • André Deutz
    • 1
  • Thomas Bäck
    • 1
  1. 1.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations