Advertisement

Comparison of Reference- and Hypervolume-Based MOEA on Solving Many-Objective Optimization Problems

  • Dani IrawanEmail author
  • Boris Naujoks
Conference paper
  • 1.1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11411)

Abstract

Hypervolume-based algorithms are not widely used for solving many-objective optimization problems due to the bottleneck of hypervolume computation. Approximation methods can alleviate the problem and are discussed and tested in this work. Several MOEAs are considered, but after pre-experimental tests, only two variants of SMS-EMOA are considered further. These algorithms are compared to NSGA-III, a reference-based algorithm. The results show that SMS-EMOA with hypervolume approximation is viable for many-objective optimization problems and is faster in convergence towards the Pareto-front.

Keywords

Hypervolume approximation MOEA Reference vector Many-objective optimization 

Notes

Acknowledgments

This work is funded by the European Commission’s H2020 programme through the UTOPIAE Marie Curie Innovative Training Network, H2020-MSCA-ITN-2016, under Grant Agreement No. 722734 as well as through the Twinning project SYNERGY under Grant Agreement No. 692286.

References

  1. 1.
    Agrawal, R.B., Deb, K.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)CrossRefGoogle Scholar
  3. 3.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefGoogle Scholar
  4. 4.
    Biscani, F., Izzo, D.: esa/pagmo2: pagmo 2.8 (2018).  https://doi.org/10.5281/zenodo.1311209
  5. 5.
    Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersections of high-dimensional geometric objects. Comput. Geom. 43(6), 601–610 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. Theor. Comput. Sci. 425, 104–116 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. Trans. Evol. Comput. 18(4), 577–601 (2014)CrossRefGoogle Scholar
  8. 8.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  9. 9.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation (CEC), pp. 825–830. IEEE Press, Piscataway (2002)Google Scholar
  10. 10.
    Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31880-4_5CrossRefzbMATHGoogle Scholar
  11. 11.
    Glasmachers, T., Naujoks, B., Rudolph, G.: Start small, grow big? Saving multi-objective function evaluations. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 579–588. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_57CrossRefGoogle Scholar
  12. 12.
    Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. Trans. Evol. Comput. 10(5), 477–506 (2006)CrossRefGoogle Scholar
  13. 13.
    Hughes, E.J.: Multiple single objective Pareto sampling. In: Congress on Evolutionary Computation (CEC), vol. 4, pp. 2678–2684. IEEE Press, Piscataway (2003)Google Scholar
  14. 14.
    Hughes, E.J.: MSOPS-II: a general-purpose many-objective optimiser. In: Congress on Evolutionary Computation (CEC), pp. 3944–3951. IEEE Press, Piscataway (2007)Google Scholar
  15. 15.
    Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)CrossRefGoogle Scholar
  16. 16.
    Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Congress on Evolutionary Computation (CEC), pp. 2419–2426. IEEE Press, Piscataway (2008)Google Scholar
  17. 17.
    Ishibuchi, H., Tsukamoto, N., Sakane, Y., Nojima, Y.: Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions. In: Genetic and Evolutionary Computation (GECCO), pp. 527–534. ACM, New York (2010)Google Scholar
  18. 18.
    Jain, H., Deb, K.: An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 307–321. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37140-0_25CrossRefGoogle Scholar
  19. 19.
    Kramer, O.: A review of constraint-handling techniques for evolution strategies. Appl. Comput. Intell. Soft Comput. 3:1–3:19 (2010)Google Scholar
  20. 20.
    Li, M., Yang, S., Liu, X., Shen, R.: A comparative study on evolutionary algorithms for many-objective optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 261–275. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37140-0_22CrossRefGoogle Scholar
  21. 21.
    Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014)CrossRefGoogle Scholar
  22. 22.
    Tang, W., Liu, H., Chen, L.: A fast approximate hypervolume calculation method by a novel decomposition strategy. In: Huang, D.-S., Bevilacqua, V., Premaratne, P., Gupta, P. (eds.) ICIC 2017. LNCS, vol. 10361, pp. 14–25. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63309-1_2CrossRefGoogle Scholar
  23. 23.
    Voß, T., Hansen, N., Igel, C.: Improved step size adaptation for the MO-CMA-ES. In: Genetic and Evolutionary Computation (GECCO), pp. 487–494. ACM, New York (2010)Google Scholar
  24. 24.
    Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70928-2_56CrossRefGoogle Scholar
  25. 25.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  26. 26.
    Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70928-2_64CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Data Science, Engineering and AnalyticsTH-Köln - University of Applied SciencesCologneGermany

Personalised recommendations