A Survey on the Pain Threshold and Its Use in Robotics Safety Standards

  • A. MylaeusEmail author
  • A. Vempati
  • B. Tranter
  • R. Siegwart
  • P. Beardsley
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 95)


Physical contact between humans and robots is becoming more common, for example with personal care robots, in human–robot collaborative tasks, or with social robots. Traditional safety standards in robotics have emphasised separation between humans and robots, but physical contact now becomes part of a robot’s normal function. This motivates new requirements, beyond safety standards that deal with the avoidance of contact and prevention of physical injury, to handle the situation of expected contact combined with the avoidance of pain. This paper reviews the physics and characteristics of human–robot contact, and summarises a set of key references from the pain literature, relevant for the definition of robotics safety standards.


Pain Algometry Physical human–robot interaction Pain threshold ISO TS 15066 Body model 



We thank Prof. Yoji Yamada and members of ISO TC 199/WG 12 for motivating discussion for the survey in this paper.


  1. 1.
    Bicchi A, Bavaro M, Boccadamo G, De Carli D, Filippini R, Grioli G, Piccigallo M, Rosi A, Schiavi R, Sen S, et al (2008a) Physical human-robot interaction: dependability, safety, and performance. In: 10th IEEE international workshop on advanced motion control, 2008. AMC’08. IEEE, pp 9–14Google Scholar
  2. 2.
    Bicchi A, Peshkin MA, Colgate JE (2008b) Safety for physical human–robot interaction. In: Handbook of robotics. Springer, pp 1335–1348Google Scholar
  3. 3.
    Cathcart S, Pritchard D (2006) Reliability of pain threshold measurement in young adults. J Headache Pain 7(1):21–26CrossRefGoogle Scholar
  4. 4.
    Cherubini A, Passama R, Crosnier A, Lasnier A, Fraisse P (2016) Collaborative manufacturing with physical human-robot interaction. Robot Comput-Integr Manuf 40:1–13CrossRefGoogle Scholar
  5. 5.
    Chesterton LS, Barlas P, Foster NE, Baxter GD, Wright CC (2003) Gender differences in pressure pain threshold in healthy humans. Pain 101(3):259–266CrossRefGoogle Scholar
  6. 6.
    De Luca A, Flacco F (2012) Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration. In: 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 288–295Google Scholar
  7. 7.
    De Santis A, Siciliano B (2007) Reactive collision avoidance for safer human–robot interaction. In: 5th IARP/IEEE RAS/EURON workshop on technical challenges for dependable robots in human environmentsGoogle Scholar
  8. 8.
    De Santis A, Siciliano B, De Luca A, Bicchi A (2008) An atlas of physical human-robot interaction. Mech Mach Theory 43(3):253–270CrossRefGoogle Scholar
  9. 9.
    Defrin R, Ronat A, Ravid A, Peretz C (2003) Spatial summation of pressure pain: effect of body region. Pain 106(3):471–480CrossRefGoogle Scholar
  10. 10.
    Fabio Antonaci M (1998) Pressure algometry in healthy subjects: inter-examiner variability. Scand J Rehab Med 30(3):8Google Scholar
  11. 11.
    Fischer AA (1987) Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain 30(1):115–126CrossRefGoogle Scholar
  12. 12.
    Fraichard T (2007) A short paper about motion safety. In: 2007 IEEE international conference on robotics and automation. IEEE, pp 1140–1145Google Scholar
  13. 13.
    Fryman J, Matthias B (2012) Safety of industrial robots: from conventional to collaborative applications. In: 7th German conference on robotics ROBOTIK 2012. pp 1–5Google Scholar
  14. 14.
    Haddadin S, Croft E (2016) Physical human-robot interaction. Springer, Cham, pp 1835–1874Google Scholar
  15. 15.
    Haddadin S, Albu-Schäffer A, Hirzinger G (2007) Safe physical human-robot interaction: Measurements, analysis and new insights, vol 66, pp 395–407. ISRR, SpringerGoogle Scholar
  16. 16.
    Haddadin S, Albu-Schäffer A, Hirzinger G (2010) Safety analysis for a human-friendly manipulator. Int. J. Soc. Robot. 2(3):235–252CrossRefGoogle Scholar
  17. 17.
    Haddadin S, Haddadin S, Khoury A, Rokahr T, Parusel S, Burgkart R, Bicchi A, Albu-Schäffer A (2012) A truly safely moving robot has to know what injury it may cause. In: 2012 IEEE/RSJ international conference on intelligent robots and Systems (IROS). IEEE, pp 5406–5413Google Scholar
  18. 18.
    Harper C, Virk G (2010) Towards the development of international safety standards for human robot interaction. Int J Soc Robot 2(3):229–234CrossRefGoogle Scholar
  19. 19.
    Hayes SC, Bissett RT, Korn Z, Zettle RD et al (1999) The impact of acceptance versus control rationales on pain tolerance. Psychol Rec 49(1):33CrossRefGoogle Scholar
  20. 20.
    Heinzmann J, Zelinsky A (2003) Quantitative safety guarantees for physical human-robot interaction. Int J Robot Res 22(7–8):479–504CrossRefGoogle Scholar
  21. 21.
    Ikuta K, Ishii H, Nokata M (2003) Safety evaluation method of design and control for human-care robots. In J Robot Res 22(5):281–297CrossRefGoogle Scholar
  22. 22.
    ISO (2011) Ts 15066: 2011: Robots and robotic devices collaborative robots. Technical report, International Organization for StandardizationGoogle Scholar
  23. 23.
    Kargov A, Pylatiuk C, Martin J, Schulz S, Döderlein L (2004) A comparison of the grip force distribution in natural hands and in prosthetic hands. Disabil Rehab 26(12):705–711CrossRefGoogle Scholar
  24. 24.
    Keele K (1954) Pain-sensitivity tests: the pressure algometer. Lancet 263(6813):636–639CrossRefGoogle Scholar
  25. 25.
    Kinser AM, Sands WA, Stone MH (2009) Reliability and validity of a pressure algometer. J Strength Conditioning Res 23(1):312–314CrossRefGoogle Scholar
  26. 26.
    Knoop E, Baecher M, Wall V, Deimel R, Brock O, Beardsley P (2017) Handshakiness: benchmarking for human-robot hand interactions. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS)Google Scholar
  27. 27.
    Krüger J, Lien TK, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann-Manuf Technol 58(2):628–646CrossRefGoogle Scholar
  28. 28.
    Lacourt TE, Houtveen JH, van Doornen LJP (2017) Experimental pressure-pain assessments: test–retest reliability, convergence and dimensionality. Scand J Pain 3(1):31–37CrossRefGoogle Scholar
  29. 29.
    Laffranchi M, Tsagarakis NG, Caldwell DG (2009) Safe human robot interaction via energy regulation control. In: IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009. IEEE, pp 35–41Google Scholar
  30. 30.
    Lau IV, Viano DC (1986) The viscous criterion-bases and applications of an injury severity index for soft tissues. Technical report, SAE Technical PaperGoogle Scholar
  31. 31.
    Melia M, Schmidt M, Geissler B, König J, Krahn U, Ottersbach HJ, Letzel S, Muttray A (2015) Measuring mechanical pain: the refinement and standardization of pressure pain threshold measurements. Behav Res Methods 47(1):216–227CrossRefGoogle Scholar
  32. 32.
    Mewes D, Mauser F (2003) Safeguarding crushing points by limitation of forces. Int J Occup Safety Ergonomics 9(2):177–191CrossRefGoogle Scholar
  33. 33.
    Ohrbach R, Gale EN (1989) Pressure pain thresholds in normal muscles: reliability, measurement effects, and topographic differences. Pain 37(3):257–263CrossRefGoogle Scholar
  34. 34.
    Özcan A, Tulum Z, Pınar L, Başkurt F (2004) Comparison of pressure pain threshold, grip strength, dexterity and touch pressure of dominant and non-dominant hands within and between right-and left-handed subjects. J Korean Med Sci 19(6):874–878CrossRefGoogle Scholar
  35. 35.
    Park JJ, Haddadin S, Song JB, Albu-Schäffer A (2011) Designing optimally safe robot surface properties for minimizing the stress characteristics of human-robot collisions. In: 2011 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5413–5420Google Scholar
  36. 36.
    Povse B, Koritnik D, Bajd T, Munih M (2010) Correlation between impact-energy density and pain intensity during robot-man collision. In: 2010 3rd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 179–183Google Scholar
  37. 37.
    Povse B, Haddadin S, Belder R, Koritnik D, Bajd T (2016) A tool for the evaluation of human lower arm injury: approach, experimental validation and application to safe robotics. Robotica 34(11):2499–2515CrossRefGoogle Scholar
  38. 38.
    Radi A (2013) Human injury model for small unmanned aircraft impacts. Tech report, Civil Aviation Safety Authority, AustraliaGoogle Scholar
  39. 39.
    Teo K, Chow CK, Vaz M, Rangarajan S, Yusuf S et al (2009) The prospective urban rural epidemiology (pure) study: examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am Heart J 158(1):1–7CrossRefGoogle Scholar
  40. 40.
    Wang Z, Peer A, Buss M (2009) An hmm approach to realistic haptic human-robot interaction. In: EuroHaptics conference, 2009 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics 2009. Third Joint, IEEE, pp 374–379Google Scholar
  41. 41.
    Weng YH, Chen CH, Sun CT (2009) Toward the human-robot co-existence society: on safety intelligence for next generation robots. Int J Soc Robot 1(4):267–282CrossRefGoogle Scholar
  42. 42.
    Wikipedia (2017a) Abbreviated injury scale.
  43. 43.
    Wikipedia (2017b) Head injury criterion.
  44. 44.
    Yamada Y, Hirasawa Y, Huang SY, Umetani Y (1996) Fail-safe human/robot contact in the safety space. In: 5th IEEE international workshop on robot and human communication, 1996. pp 59–64.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. Mylaeus
    • 1
    Email author
  • A. Vempati
    • 2
    • 4
  • B. Tranter
    • 3
  • R. Siegwart
    • 1
  • P. Beardsley
    • 4
  1. 1.Autonomous Systems Lab, ETHZürichSwitzerland
  2. 2.Autonomous Systems Lab, ETHZürichSwitzerland
  3. 3.BSI Consumer and Public Interest Unit UKLondonUK
  4. 4.Disney ResearchZürichSwitzerland

Personalised recommendations