Advertisement

Nanoagriculture and Energy Advances

  • R. G. Cásarez-Santiago
  • J. J. Chanona-Pérez
  • C. A. Reséndiz-Mora
  • N. Gϋemes-Vera
  • A. Manzo-Robledo
  • M. J. Perea-Flores
  • M. Q. Marin-Bustamante
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nanotechnology is a multidisciplinary science that is focused on characterization, production, and manipulation of materials at nanoscale, while nanoagriculture does to reference to three main fields: water, energy, and agro-food production, where the nanotechnology can be applied. The discovery of carbon nanotubes unleashed the revolution in the use and handling of nanomaterials. The most used nanomaterials in nanoagriculture are nanomembranes, nanoporous polymers, nanoporous zeolites, carbon nanotubes for nanosensors, and catalytic nanoparticles for the removal of pollutants of environment. Recently, an attractive application of nanotechnology is energy production based on the use of biological nanomaterials supported in carbon nanotubes and graphene. The understanding of nanotechnology is important to contribute significantly to improvement of growing crops, water quality, and sustainable energy.

Keywords

Nanomaterials Nanoagriculture Carbon nanotubes Energy production Nanosensors Catalytic nanoparticles Graphene 

References

  1. Abdallah H, Moustafa AF, AlAnezi AA, El-Sayed HEM (2014) Performance of a newly developed titanium oxide nanotubes/polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination 346:30–36CrossRefGoogle Scholar
  2. Adio OS, Basheer C, Zafarullah K, Alshaara A, Siddiqui A (2016) Biogenic synthesis of silver nanoparticles; study of the effect of physicochemical parameters and application as nanosensor in the colorimetric detection of Hg2+ in water. Int J Environ Anal Chem 96(8):776–788CrossRefGoogle Scholar
  3. Afonso AS, Perez-Lopez B, Faria RC, Mattoso LHC, Hernandez-Herrero M, Roig-Sagues AX, Costa MM, Merkoci A (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40:121–126PubMedCrossRefPubMedCentralGoogle Scholar
  4. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2006) Biogas production from maize and dairy cattle manure-influence of biomass composition on the methane yield. Agric Ecosyst Environ 118:173–182CrossRefGoogle Scholar
  5. Bakhteeva IA, Medvedeva IV, UiminI MA, ByzovS IV, Zhakov SV, Yermakov AE, Shchegoleva NN (2016) Magnetic sedimentation and aggregation of Fe3O4@SiO2 nanoparticles in water médium. Sep Purif Technol 159:35–42CrossRefGoogle Scholar
  6. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229–235CrossRefGoogle Scholar
  7. Brown D, Li Y (2012) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol 127:275–280PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bunyakul N, Edwards K, Promptmas C, Baeumner A (2008) Cholera toxin subunit B detection in microfluidic devices. Anal Bioanal Chem 393(1):177–186PubMedCrossRefPubMedCentralGoogle Scholar
  9. Calogero G, Di Marco G, Cazzanti S, Caramori S, Argazzi R, Di Carlo A (2011) Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. Int J Mol Sci 11:254–267CrossRefGoogle Scholar
  10. Calogero G, Yumb HJ, Sinopolia A, Di Marco G, Grätzel M, Nazeeruddin MK (2012) Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. J Sol Energy Eng 86:1563–1575CrossRefGoogle Scholar
  11. Calogero G, Citro I, Di Marco G, Minicante SA, Morabito M, Genovese G (2014) Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochim Acta A Mol Biomol Spectrosc 117:702–706PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chauke VP, Antunes E, Chidawanyika W, Nyokong T (2011) Photocatalytic behaviour of tantalum (V) phthalocyanines in the presence of gold nanoparticles towards the oxidation of cyclohexene. J Mol Catal A Chem 335:121–128CrossRefGoogle Scholar
  13. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22CrossRefGoogle Scholar
  14. Chilari D, Dimos K, Georgoula G, Paschos T, Mamma D, Louloudi A, Papayannakos N, Kekos D (2017) Bioethanol production from alkali-treated cotton stalks at high solids loading applying non-isothermal simultaneous saccharification and fermentation. Waste Biomass Valorization 8:1919–1929CrossRefGoogle Scholar
  15. Chookhongkha N, Sopondilok T, Photchanachai S (2012) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Proc Int Conf Postharvest Pest Dis Manag Exporting Hortic Crops-PPDM 973:231–237Google Scholar
  16. Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manag 91:2238–2247CrossRefGoogle Scholar
  17. Connelly JT, Baeumner AJ (2012) Biosensors for the detection of waterborne pathogens. Anal Bioanal Chem 402:117–127PubMedCrossRefGoogle Scholar
  18. Constantine C, Gattas-Asfura K, Mello S, Crespo G, Rastogi V, Cheng T, DeFrank J, Leblanc R (2003) Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. J Phys Chem B 107:13762–13764CrossRefGoogle Scholar
  19. Das R, Ali ME, Hamid SBA (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109CrossRefGoogle Scholar
  20. Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400CrossRefGoogle Scholar
  21. Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15:591–605CrossRefGoogle Scholar
  22. Devaramani S, Malingappa P (2012) Synthesis and characterization of cobalt nitroprusside nano particles: application to sulfite sensing in food and water samples. Electrochim Acta 85:579–587CrossRefGoogle Scholar
  23. Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3:033002CrossRefGoogle Scholar
  24. Dong H, Zhao F, He Q, Xie Y, Zeng Y, Zhang L, Tang L, Zeng G (2017) Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions. Sep Purif Technol 175:376–383CrossRefGoogle Scholar
  25. Drobek M, Yacou C, Motuzas J, Julbe A, Liping D, Diniz da Costa JC (2012) Long term pervaporation desalination of tubular MFI zeolite membranes. J Membr Sci 415–416:816–823CrossRefGoogle Scholar
  26. El-Mashad HM, Zhang R (2009) Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol 101:4021–4028CrossRefGoogle Scholar
  27. Elyasi M, Khalilzadeh MA, Karimi-Maleh H (2013) High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem 141:4311–4317PubMedCrossRefPubMedCentralGoogle Scholar
  28. Essalhi M, Khayet M (2014) Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: effects of polymer concentration and desalination by direct contact membrane distillation. J Membr Sci 454:133–143CrossRefGoogle Scholar
  29. European Commission (2012) Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions A Blueprint to Safeguard Europe’s Water ResourcesGoogle Scholar
  30. Fan L, Jin R, Le X, Zhou X, Chen S, Liu H, Xiong Y (2012) Chitosan microspheres for controlled delivery of auxins as agrochemicals. Microchim Acta 176:381–387CrossRefGoogle Scholar
  31. FAO (1994) Water quality for agriculture. FAO, RomeGoogle Scholar
  32. Gan T, Li K, Wu K (2008) Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I. Sens Actuators B-Chem 132:134–139CrossRefGoogle Scholar
  33. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652PubMedGoogle Scholar
  34. Ghanbari M, Emadzadeh D, Lau WJ, Lai SO, Matsuura T, Ismail AF (2015a) Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination 358:33–41CrossRefGoogle Scholar
  35. Ghanbari M, Emadzadeh D, Lau WJ, Matsuura T, Davoody M, Ismail AF (2015b) Super hydrophilic TiO2/HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application. Desalination 371:104–114CrossRefGoogle Scholar
  36. Gomez L, Sebastian V, Arruebo M, Santamaria J, Cronin SB (2014) Plasmon-enhanced photocatalytic water purification. Phys Chem Chem Phys 16:15111PubMedCrossRefGoogle Scholar
  37. Gómez-Ortíz NM, Vázquez-Maldonado IA, Pérez-Espadas AR, Mena-Rejón GJ, Azamar-Barrios JA, Oskam G (2010) Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Solar Energy Mater Solar Cell 94:40–44CrossRefGoogle Scholar
  38. Goral VN, Zaytseva NV, Baeumner AJ (2006) Electrochemical microfluidic biosensor for the detection of nucleic acid sequences. Lab Chip 6(3):414–421PubMedCrossRefGoogle Scholar
  39. Guedri H, Durrieu C (2008) A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring. Microchim Acta 163:179–184CrossRefGoogle Scholar
  40. Han C, Li H (2010) Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. Analyst 135:583–588PubMedCrossRefGoogle Scholar
  41. Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 23:3693–3700CrossRefGoogle Scholar
  42. Hao S, Wu J, Huang Y, Lin J (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80:209–214CrossRefGoogle Scholar
  43. Hao YM, Chen M, Hu ZB (2010) Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184:392–399PubMedCrossRefGoogle Scholar
  44. Hao C, Xua L, Xing C, Kuang H, Wang L, Xu C (2012) Oligonucleotide-based fluorogenic sensor for simultaneous detection of heavy metal ions. Biosens Bioelectron 36:174–178PubMedCrossRefGoogle Scholar
  45. Henning A, Gunzburger G, Johr R, Rosenwaks Y, Bozic-Weber B, Housecroft CE (2013) Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes. Beilstein J Nanotechnol 4:418–428PubMedPubMedCentralCrossRefGoogle Scholar
  46. Huang Y, Zeng F, Guo L, Lan J, Zhang L, Cao D (2018) Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep Purif Technol 194:462–469CrossRefGoogle Scholar
  47. Hug H, Bader M, Mair P, Glatzel T (2014) Biophotovoltaics: natural pigments in dye-sensitized solar cell. Appl Energy 115:216–225CrossRefGoogle Scholar
  48. Imamoglu E, Sukan FV (2014) The effects of single and combined cellulosic agrowaste substrates on bioethanol production. Fuel 134:477–484CrossRefGoogle Scholar
  49. Iryani DA, Kumagai S, Nonaka M, Sasaki K, Hirajima T (2017) Characterization and production of solid biofuel from sugarcane bagasse by hydrothermal carbonization. Waste Biomass Valorization 8:1941–1951CrossRefGoogle Scholar
  50. Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22(3):321–361Google Scholar
  51. Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dasgupta N, Ramalingam C, Swamiappan S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on antibacterial activity of nanosized silica derived from hyper coordinated silicon(IV) precursors guidelines to the referees. RSC Adv 71:66394–66406CrossRefGoogle Scholar
  52. Ji X, Zheng J, Xu J, Rastogi V, Cheng T, DeFrank J, Leblanc R (2005) (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 109:3793–3799PubMedCrossRefGoogle Scholar
  53. Ji Z, Ismail MN, Callahan DM, Pandowo E, Cai Z, Goodrich TL, Ziemer KS, Warzywoda J, Sacco A et al (2011) The role of silver nanoparticles on silver modified titanosilicate ETS-10 in visible light photocatalysis. Appl Catal B Environ 102:323–333CrossRefGoogle Scholar
  54. Jiang Z, Shangguan W (2015) Rational removal of stabilizer-ligands from platinum nanoparticles supported on photocatalysts by self-photocatalysis degradation. Catal Today 242:372–380CrossRefGoogle Scholar
  55. Joung HA, Lee NR, Lee SK, Ahn J, Shin YB, Choi HS, Lee CS, Kim S, Kim MG (2008) High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 630:168–173PubMedCrossRefGoogle Scholar
  56. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment. Environ Sci Technol 45:3902–3908PubMedCrossRefGoogle Scholar
  57. Khanna A, Shetty VK (2014) Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@TiO2 core–shell nanoparticles: a comparison with UV photocatalysis. Sol Energy 99:67–76CrossRefGoogle Scholar
  58. Khataee AR, Fathinia M, Joo SW (2013) Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation. Spectrochim Acta Part A Mol Biomol Spectrosc 112:33–45CrossRefGoogle Scholar
  59. Krajangpan S, Kalita H, Chisholm BJ, Bezbaruah AN (2012) Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: dispersibility and contaminant treatability. Environ Sci Technol 46:10130–10136PubMedGoogle Scholar
  60. Kral I, Piringer G, Saylor MK, Gronauer A, Bauer A (2016) Environmental effects of steam explosion pretreatment on biogas from maize case study of a 500-kw Austrian biogas facility. Bioenergy Res 9:198–207CrossRefGoogle Scholar
  61. Kuang H, Chen W, Yan W, Xu L, Zhu Y, Liu L, Chu H, Peng C, Wang L, Kotov NA, Xu C (2011) Crown ether assembly of gold nanoparticles: melamine sensor. Biosens Bioelectron 26:2032–2037PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA-starch formulation-supported Cu-Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53:7150–7164CrossRefGoogle Scholar
  63. Lei Y, Mulchandani P, Chen W, Mulchandani A (2005) Direct determination of p-Nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified clark oxygen electrode. J Agric Food Chem 53:524–527PubMedCrossRefPubMedCentralGoogle Scholar
  64. Leung WH, Zou L, Lo WH, Chan PH (2013) An amyloid-fibril-based colorimetric nanosensor for rapid and sensitive chromium(VI) detection. Chem Plus Chem 78:1440–1445Google Scholar
  65. Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51:129–137PubMedCrossRefPubMedCentralGoogle Scholar
  66. Li X, Chen Y, Hu X (2014) Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J Membr Sci 471:118–129CrossRefGoogle Scholar
  67. Li F, Fan K, Xu B, Gabrielsson E, Daniel Q, Li L, Sun L (2015) Organic dye-sensitized tandem photoelectrochemical cell for light driven total water splitting. J Am Chem Soc 137:9153–9159PubMedCrossRefPubMedCentralGoogle Scholar
  68. Liu Y, Yao D, Chang H, Liu C, Chen C (2008) Magnetic bead based DNA detection with multi-layers quantum dots labeling for rapid detection of Escherichia coli O157:H7. Biosens Bioelectron 24:558–565PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ma H, Burger C, Hsiao BS, Chu B (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12:970–976PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ma H, Burger C, Hsiao BS, Chu B (2013) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282CrossRefGoogle Scholar
  71. Madhura L, Kanchi S, Sabela MI, Singh S, Bisetty K, Inamuddin (2017) Membrane technology for water purification.  https://doi.org/10.1007/s10311-017-0699-yCrossRefGoogle Scholar
  72. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:7Google Scholar
  73. Malato S, Blanco J, Ca’ceres J (2002) Photocatalytic treatment of water soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal Today 76:209–220CrossRefGoogle Scholar
  74. Mehmood T, Shaheen Z, Malik SA, Tabassam Q, Siddique F, Jabeen L (2016) Utilization of waste and under-utilized Pongamia pinnata seed oil for acquiring maximal process to get ameliorate yield of biodiesel through response surface methodology. Waste Biomass Valorization 7:495–506CrossRefGoogle Scholar
  75. Melemeni M, Stamatakis D, Xekoukoulotakis NP, Mantzavinos D, Kalogerakis N (2009) Disinfection of municipal wastewater by TiO2 photocatalysis with UV-A, visible and solar irradiation and bdd electrolysis. Glob Nest J 11:357–363Google Scholar
  76. Mozaffari SA, Saeidi M, Rahmaniana R (2015) Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer. Spectrochimic Acta A Mol Biomol Spectrosc 142:226–231CrossRefGoogle Scholar
  77. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mutreja R, Das D, Goya D, Goyal A (2011) Bioconversion of agricultural waste to ethanol by SSF using recombinant cellulase from Clostridium thermocellum. Enzyme Research 2011:340279, 6 pagesPubMedPubMedCentralCrossRefGoogle Scholar
  79. Nadiminti AP, Dong YD, Sayer C, Hay P, Rookes JE, Boyd BJ, Cahill DM (2013) Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces 5:1818–1826PubMedCrossRefPubMedCentralGoogle Scholar
  80. Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125–131PubMedCrossRefGoogle Scholar
  81. Nalbandian MJ, Zhang M, Sanchez J, Cho YH, Nam J, Cwiertny DM, Myung NV (2016) Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources. Chemosphere 144:975–981PubMedCrossRefGoogle Scholar
  82. Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546PubMedCrossRefGoogle Scholar
  83. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M (2013) Nanotechnology in plant disease management: DNA directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980PubMedCrossRefGoogle Scholar
  84. Ojea-Jimenez I, Lopez X, Arbiol J, Puntes V (2012) Citrate-coated gold nanoparticles as smart scavengers for mercury (ii) removal from polluted waters. ACS Nano 6(3):2253–2260PubMedCrossRefGoogle Scholar
  85. Oliveira HC, Stolf-Moreira R, Martinez CBR, Sousa GFM, Grillo R, de Jesus MB, Fraceto LF (2015) Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Front Chem 3:61PubMedPubMedCentralCrossRefGoogle Scholar
  86. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci Total Environ 409:4141–4166PubMedCrossRefGoogle Scholar
  87. Palmqvist NGM, Seisenbaev GA, Svedlindh P, Kessler VG (2017) Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res Lett 12:631PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pan J, Yao H, Li XX, Wang B, Huo P, Xu W, Ou H, Yana Y (2011) Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol A and 2,4,6-trichlorophenol from aqueous solutions. J Hazard Mater 190:276–284PubMedCrossRefPubMedCentralGoogle Scholar
  89. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103:228–236PubMedCrossRefPubMedCentralGoogle Scholar
  90. Pérez-Quiñones J, Coll-García Y, Curiel H, Peniche-Covas C (2010) Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydr Polym 80:915–921CrossRefGoogle Scholar
  91. Pigeot-Re’my S, Simonet F, Errazuriz-Cerda E, Lazzaroni JC, Atlane D, Guillarda C (2011) Photocatalysis and disinfection of water: identification of potential bacterial targets. Appl Catal B Environ 104:390–398CrossRefGoogle Scholar
  92. Plugge MC (2017) Biogas. Microb Biotechnol 10:1128–1130PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pourjavadi A, Farhadpour B, Seidi F (2009) Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery. J Polym Res 16:655–665CrossRefGoogle Scholar
  94. Pradeep TA (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478CrossRefGoogle Scholar
  95. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927CrossRefGoogle Scholar
  96. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  97. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  98. Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173:51–57CrossRefGoogle Scholar
  99. Rabah AB, Oyeleke SB, Manga SB, Hassan LG, Ibrahim AD, Shehu K (2011) Role of Pleurotus ostreatus and Gloeophyllum sepiarium in the hydrolysis of some common agro-wastes. Am J Biochem Biotechnol 7(4):509Google Scholar
  100. Ramírez-Zamora RM, Espejel-Ayala F, Solís-López M, González-Barceló O, Gómez RW, Pérez-Mazariego JL, Navarro-González R, Schouwenaars R (2016) Optimisation and analysis of the synthesis of a cellular glass-ceramic produced from water purification sludge and clay. Appl Clay Sci 123:232–238CrossRefGoogle Scholar
  101. Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett.  https://doi.org/10.1007/s10311-016-0586-yCrossRefGoogle Scholar
  102. Razmovski R, Vučurović V (2012) Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel 92:1–8CrossRefGoogle Scholar
  103. Romero-Millán LM, Sierra-Vargas FE, Nzihou A (2017) Kinetic analysis of tropical lignocellulosic Agrowaste pyrolysis. Bioenergy Res 10:832–845CrossRefGoogle Scholar
  104. Řezanka T, Matoulková D, Kolouchová I, Masák J, Viden I, Sigler K (2015) Extraction of brewer’s yeasts using different methods of cell disruption for practical biodiesel production. Folia Microbiol 60:225–234CrossRefGoogle Scholar
  105. Salinas S, Mosquera N, Yate L, Coy E, Yamhure G, González E (2014) Surface plasmon resonance nanosensor for the detection of arsenic in water. Sensors Transducers 183(12):97–102Google Scholar
  106. Sanchez-Acevedo ZC, Riu J, Rius FX (2009) Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-a. Biosens Bioelectron 24:2842–2846PubMedCrossRefPubMedCentralGoogle Scholar
  107. Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838PubMedCrossRefPubMedCentralGoogle Scholar
  108. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 207:31–53CrossRefGoogle Scholar
  109. Singh SP, Asthana K, Singh P (2007) Prospects of sugarcane milling waste utilization for hydrogen production in India. Energy Policy 35:4164–4168CrossRefGoogle Scholar
  110. Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909.  https://doi.org/10.3389/fmicb.2017.01909
  111. Sweeney SF, Woehrle GH, Hutchison JE (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc 12(10):3190–3197CrossRefGoogle Scholar
  112. Taha M, Kadali KK, AL-Hothaly K, Smith AT, Ball AS, Adetutu EM (2015) An effective microplate method (Biolog MT2) for screening native lignocellulosic-straw-degrading bacteria. Ann Microbiol 65:2053–2064CrossRefGoogle Scholar
  113. Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, Lv L, Petri WA Jr, Haque R, Houpt ER (2011) High throughput multiplex pcr and probe-based detection with luminex beads for seven intestinal parasites. Am J Trop Med Hyg 84(2):332–337PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tarafdar JC, Raliya R, Mahawar H, Rathore (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262CrossRefGoogle Scholar
  115. Vamvakaki V, Chaniotakis N (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853PubMedCrossRefPubMedCentralGoogle Scholar
  116. Velmurugan B, Ramanujam RA (2011) Anaerobic digestion of vegetable wastes for biogas production in a fed-batch reactor. Int J Emerg Sci 1(3):478–486Google Scholar
  117. Viscarra-Rossel RA, Bouma (2016) Soil sensing: a new paradigm for agriculture. Agric Syst 148:71–74CrossRefGoogle Scholar
  118. Wang M, Li Z (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sens Actuators B-Chem 133:607–612CrossRefGoogle Scholar
  119. Wang X, Matsuda A, Koyama Y, Nagae H, Sasaki S, Tamiaki H (2006) Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid. Chem Phys Lett 423:470–475CrossRefGoogle Scholar
  120. Wang XF, Tamiaki H, Wang L, Tamai N, Kitao O, Zhou H, Sasaki S (2010) Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Langmuir 26(9):6320–6327PubMedCrossRefGoogle Scholar
  121. Wang C, Xu Z, Cheng H, Lin H, Humphrey MG, Zhang G (2015) A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82:87–95CrossRefGoogle Scholar
  122. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860CrossRefGoogle Scholar
  123. Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157: H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80(15):5854–5863PubMedCrossRefGoogle Scholar
  124. Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy Mater Sol Cells 91:566–571CrossRefGoogle Scholar
  125. Wu M, Tang W, Gu J, Wang Q, He P, Fang Y (2013) Electrochemical detection of Sudan I using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode. Am J Anal Chem 4:1–6CrossRefGoogle Scholar
  126. Xia Y, Song L, Zhu C (2011) Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)- (quantum dots) assembly. Anal Chem 83:401–1407CrossRefGoogle Scholar
  127. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  128. Yamazaki E, Murayama M, Nishikawa N, Hashimoto N, Shoyama M, Kurita O (2007) Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Sol Energy 81:512–516CrossRefGoogle Scholar
  129. Yang J, Wang K, Liang L, Feng L, Zhang Y, Sun B, Xing W (2012) A hybrid photoelectrochemical biofuel cell based on the photosensitization of a chlorophyll derivative on TiO2 film. Catal Commun 20:76–79CrossRefGoogle Scholar
  130. Yi Z, Hussain HI, Feng C, Sun SF, Rookes JE, Cahill DM, Kong L (2015) Functionalized mesoporous silica nanoparticles with redox responsive short-chain gatekeepers for agrochemical delivery. ACS Appl Mater Interfaces 7:9937–9946PubMedCrossRefPubMedCentralGoogle Scholar
  131. Yuvaraj M, Subramanian KS (2015) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61(2):319–326CrossRefGoogle Scholar
  132. Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5:28–42CrossRefGoogle Scholar
  133. Zhang D, Carr DJ, Alocilja EC (2009a) Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. Biosens Bioelectron 24(5):1377–1381PubMedCrossRefGoogle Scholar
  134. Zhang Z, Cissoko N, Wo J, Xu X (2009b) Factors influencing the dechlorination of 2,4-dichlorophenol by Ni–Fe nanoparticles in the presence of humic acid. J Hazard Mater 165:78–86PubMedCrossRefPubMedCentralGoogle Scholar
  135. Zhao G, Xing F, Deng S (2007) A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/nano-Au membrane and screen-printed electrode. Electrochem Commun 9:1263–1268CrossRefGoogle Scholar
  136. Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA (2016) Metabolomics to detect response of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environ Sci Technol 50(17):9697–9707PubMedCrossRefGoogle Scholar
  137. Zhao L, Hu Q, Huang Y, Fulton NA, Hannah-Bick C, Adeleye AS, Keller AA (2017) Activation of antioxidant and detoxification gene expression in cucumber plants exposed to a (CuOH)2 nanopesticide. Environ Sci Nano 4:1750–1760CrossRefGoogle Scholar
  138. Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A 219:188–194CrossRefGoogle Scholar
  139. Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C (2014) SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 86(3):1525–1533PubMedCrossRefGoogle Scholar
  140. Zhu L, Zhang Q, Feng H, Ang S, Chau FS, Liu WT (2004) Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells. Lab Chip 4(4):337–341PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. G. Cásarez-Santiago
    • 1
  • J. J. Chanona-Pérez
    • 1
  • C. A. Reséndiz-Mora
    • 2
  • N. Gϋemes-Vera
    • 3
  • A. Manzo-Robledo
    • 4
  • M. J. Perea-Flores
    • 5
  • M. Q. Marin-Bustamante
    • 1
  1. 1.Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería Bioquímica. Av. Wilfrido Massieu s/n Instituto Politécnico NacionalMexico CityMexico
  2. 2.Departamento de BioquímicaInstituto Politécnico Nacional, Escuela Nacional de Ciencias BiológicasMexico CityMexico
  3. 3.Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de Hidalgo (CICyTA)TulancingoMexico
  4. 4.Laboratorio de Electroquimica y CorrosiónEscuela Superior de Ingeniería Química e Industrias Extractivas-Instituto Politecnico NacionalMexico CityMexico
  5. 5.Instituto Politécnico Nacional, Centro de Nanociencias y Micro y NanotecnologíasMexico CityMexico

Personalised recommendations