Advertisement

Impact of Nanoparticles on Photosynthesizing Organisms and Their Use in Hybrid Structures with Some Components of Photosynthetic Apparatus

  • Josef Jampílek
  • Katarína Kráľová
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Oxygenic photosynthesis is a process used by plants, algae, and photosynthetic bacteria to convert light energy into chemical energy, which is stored in carbohydrate molecules that are synthesized from CO2, and this process is accompanied by oxygen evolution. The efficient photosynthesis of plants is a precondition for maintaining the oxygen content of the Earth’s atmosphere and supplying all the organic compounds and most of the energy needed for life on Earth. Due to their unusual physical, chemical, and biological properties, differing in important ways from the properties of bulk materials and single atoms or molecules, nanoparticles occurring in the environment as well as engineered ones could exert a notable impact on photosynthesizing organisms reflected in physiological and biochemical responses, including the improvement or impairment of their photosynthetic performance. In general, higher concentrations of nanoscale materials show adverse effects on plants and algae, can damage their photosynthetic apparatus, inhibit photosynthetic electron transport or CO2 reduction by suppressing Rubisco activity, and support production of harmful reactive oxygen species. On the other hand, some nanoparticles are suitable as fertilizers and plant growth promotion agents and thus contribute to higher yield of agronomically important crops. This contribution comprehensively reviews recent findings related to the impact of carbon-based nanoparticles as well as nanoscale essential and nonessential metals and their composites on photosynthesizing organisms, including corresponding mechanisms of action. Moreover, the utilization of nanoparticles combined with various components of the photosynthetic apparatus (e.g., thylakoids, photosystem II, and photosystem I) applied as photobiocatalysts for the light-induced generation of electrical power is outlined. Recent findings related to inserting nanoparticles into cells and chloroplasts of living plants in order to alter or amplify the functioning of the plant tissue or organelles using the plant nanobionics approach are briefly presented as well.

Keywords

Algae Nanobionics Nanoparticles Photobiocatalysis Photosynthesis Photosystems Plants Thylakoids 

References

  1. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing. (ISBN 978-3-319-91161-8) https://www.springer.com/us/book/9783319911601
  2. Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi J Biol Sci 23(6):773–781PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35(12):3365–3375CrossRefGoogle Scholar
  4. Alidoust D, Isoda A (2014) Phytotoxicity assessment of γ-Fe2O3 nanoparticles on root elongation and growth of rice plant. Environ Earth Sci 71(12):5173–5182CrossRefGoogle Scholar
  5. Alimohammadi M, Xu Y, Wang DY, Biris AS, Khodakovskaya MV (2011) Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology 22(29):295101PubMedCrossRefGoogle Scholar
  6. Amao Y, Tadokoro A, Nakamura M, Shuto N, Kuroki A (2014) Artificial photosynthesis by using chloroplasts from spinach adsorbed on a nanocrystalline TiO2 electrode for photovoltaic conversion. Res Chem Intermed 40(9):3257–3265CrossRefGoogle Scholar
  7. Amooaghaie R, Norouzi M, Saeri M (2017) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 95(5):441–455CrossRefGoogle Scholar
  8. Angel BM, Vallotton P, Apte SC (2015) On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae. Aquat Toxicol 168:90–97PubMedCrossRefGoogle Scholar
  9. Anusuya S, Banu KN (2016) Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatal Agric Biotechnol 8:39–44CrossRefGoogle Scholar
  10. Ashfaq M, Verma N, Khan S (2017) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4(1):138–148CrossRefGoogle Scholar
  11. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584PubMedCrossRefGoogle Scholar
  12. Astafurova TP, Burenina AA, Suchkova SA, Zotikova AP, Kulizhskiy SP, Morgalev YN (2017) Influence of ZnO and Pt nanoparticles on cucumber yielding capacity and fruit quality. Nano Hybrids Compos 13:142–148CrossRefGoogle Scholar
  13. Barber J, Tran PD (2013) From natural to artificial photosynthesis. J R Soc Interface 10(81):20120984PubMedPubMedCentralCrossRefGoogle Scholar
  14. Barhoumi L, Oukarroum A, Ben Taher L, Smiri LS, Abdelmelek H, Dewez D (2015) Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Arch Environ Contam Toxicol 68(3):510–520PubMedCrossRefGoogle Scholar
  15. Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563:956–964PubMedCrossRefGoogle Scholar
  16. Baskar V, Venkatesh J, Park SW (2015) Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp pekinensis. Environ Sci Pollut Res 22(22):17672–17682CrossRefGoogle Scholar
  17. Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12):3907–3919CrossRefGoogle Scholar
  18. Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4(2):203–221PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319Google Scholar
  20. Bhuvaneshwari M, Iswarya V, Archanaa S, Madhu GM, Kumar GKS, Nagarajan R, Chandrasekaran N, Mukherjee A (2015) Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat Toxicol 162:29–38PubMedCrossRefGoogle Scholar
  21. Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Guenther D, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44(22):8718–8723PubMedCrossRefGoogle Scholar
  22. Boddupalli A, Tiwari R, Sharma A, Singh S, Prasanna R, Nain L (2017) Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia Microbiol 62(3):253–262CrossRefGoogle Scholar
  23. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdoster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brinkert K, Le Formal F, Li XE, Durrant J, Rutherford AW, Fantuzzi A (2016) Photocurrents from photosystem II in a metal oxide hybrid system: electron transfer pathways. BBA-Bioenergetics 1857(9):1497–1505PubMedCrossRefGoogle Scholar
  25. Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16(10):23630–23650PubMedPubMedCentralCrossRefGoogle Scholar
  26. Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71CrossRefPubMedGoogle Scholar
  27. Cai P, Feng XY, Fei JB, Li GL, Li J, Huang JG, Li JB (2015) Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent. Nanoscale 7(25):10908–10911PubMedCrossRefGoogle Scholar
  28. Cai P, Jia Y, Feng XY, Li J, Li JB (2017a) Assembly of CdTe quantum dots and photosystem II multilayer films with enhanced photocurrent. Chin J Chem 35(6):881–885CrossRefGoogle Scholar
  29. Cai AJ, Guo AY, Ma ZC (2017b) Immobilization of TiO2 nanoparticles on Chlorella pyrenoidosa cells for enhanced visible-light-driven photocatalysis. Materials (Basel, Switzerland) 10(5):541CrossRefGoogle Scholar
  30. Calkins JO, Umasankar Y, O’Neill H, Ramasamy RP (2013) High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion. Energy Environ Sci 6(6):1891–1900CrossRefGoogle Scholar
  31. Campos EVR, Proenca PLF, Oliveira JL, Melville CC, Della Vechia JF, de Andrade DJ, Fraceto LF (2018) Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep 8:2067PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cano AM, Kohl K, Deleon S, Payton P, Irin F, Saed M, Shah SA, Green MJ, Canas-Carrell JE (2016) Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil. Chemosphere 152:117–122PubMedCrossRefGoogle Scholar
  33. Cao JL, Feng YZ, Lin XG, Wang JH, Xie XQ (2017a) Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. J Soils Sediments 17(3):841–851CrossRefGoogle Scholar
  34. Cao ZM, Stowers C, Rossi L, Zhang WL, Lombardini L, Ma XM (2017b) Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environ Sci Nano 4(5):1086–1094CrossRefGoogle Scholar
  35. Cao ZM, Rossi L, Stowers C, Zhang WL, Lombardini L, Ma XM (2018) The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environ Sci Pol 25(1):930–939CrossRefGoogle Scholar
  36. Cardinale BJ, Bier R, Kwan C (2012) Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. J Nanopart Res 14(8):913CrossRefGoogle Scholar
  37. Carmeli I, Lieberman I, Kraversky L, Fan ZY, Govorov AO, Markovich G, Richter S (2010) Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Lett 10(6):2069–2074PubMedCrossRefGoogle Scholar
  38. Carvajal MF, Martínez-Sánchez F, Alcaraz CF (1994) Effect of Ti (IV) on some physiological activity indicators of Capsicum anuum L. plants. J Hortic Sci 69:427–432CrossRefGoogle Scholar
  39. Castro-Bugallo A, Gonzalez-Fernandez A, Guisande C, Barreiro A (2014) Comparative responses to metal oxide nanoparticles in marine phytoplankton. Arch Environ Contam Toxicol 67(4):483–493PubMedCrossRefGoogle Scholar
  40. Cerrillo C, Barandika G, Igartua A, Areitioaurtena O, Mendoza G (2016) Towards the standardization of nanoecotoxicity testing: natural organic matter ‘camouflages’ the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae. Sci Total Environ 543(Pt 1):95–104PubMedCrossRefGoogle Scholar
  41. Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, Hsing YIC, Mou CY (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1(39):5279–5287CrossRefGoogle Scholar
  42. Chapman RL (2013) Algae: the world’s most important “plants”-an introduction. Mitig Adapt Strateg Glob Chang 18:5–12CrossRefGoogle Scholar
  43. Chen P, Powell BA, Mortimer M, Ke PC (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ Sci Technol l46(21):12178–12185CrossRefGoogle Scholar
  44. Chen GS, Qiu JL, Liu Y, Jiang RF, Cai SY, Liu Y, Zhu F, Zeng F, Luan TG, Ouyang GF (2015a) Carbon nanotubes act as contaminant carriers and translocate within plants. Sci Rep 5:15682PubMedPubMedCentralCrossRefGoogle Scholar
  45. Chen JY, Qian Y, Li HR, Cheng YH, Zhao MR (2015b) The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa. Environ Sci Pollut Res Int 22(16):12407–12414PubMedCrossRefGoogle Scholar
  46. Chen J, Dou RZ, Yang ZZ, Wang XP, Mao CB, Gao X, Wang L (2016) The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology 10(6):818–828PubMedCrossRefGoogle Scholar
  47. Chen LY, Wang CL, Li HL, Qu XL, Yang ST, Chang XL (2017) Bioaccumulation and toxicity of C-13-skeleton labeled graphene oxide in wheat. Environ Sci Technol 51(17):10146–10153PubMedCrossRefGoogle Scholar
  48. Cheng F, Liu YF, Lu GY, Zhang XK, Xie LL, Yuan CF, Xu BB (2016) Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. J Plant Physiol 193:57–63PubMedCrossRefGoogle Scholar
  49. Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol 30(4):861–869CrossRefGoogle Scholar
  50. Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851–873PubMedPubMedCentralCrossRefGoogle Scholar
  51. Chutipaijit S, Sutjaritvorakul T (2017) Application of nanomaterials in plant regeneration of rice (Oryza sativa L.). Mater Today 4(5.), Part 2):6140–6145Google Scholar
  52. Ciesielski PN, Hijazi FM, Scott AM, Faulkner CJ, Beard L, Emmett K, Rosenthal SJ, Cliffel D, Jennings GK (2010) Photosystem I – based biohybrid photoelectrochemical cells. Bioresour Technol 101(9):3047–3053PubMedCrossRefGoogle Scholar
  53. Ciornii D, Feifel SC, Hejazi M, Koelsch A, Lokstein H, Zouni A, Lisdat F (2017) Construction of photobiocathodes using multi-walled carbon nanotubes and photosystem I. Phys Status Solidi A 214(9):1700017CrossRefGoogle Scholar
  54. Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512PubMedCrossRefGoogle Scholar
  55. Costa CH, Perreault F, Oukarroum A, Melegari SP, Popovic R, Matias WG (2016) Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii. Sci Total Environ 565:951–960PubMedCrossRefGoogle Scholar
  56. Cui D, Zhang P, Ma YH, He X, Li YY, Zhang J, Zhao YC, Zhang ZY (2014) Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ Sci Nano 1(5):459–465CrossRefGoogle Scholar
  57. Das R, Kiley PJ, Segal M, Norville J, Yu AA, Wang LY, Trammell SA, Reddick LE, Kumar R, Stellacci F, Lebedev N, Schnur J, Bruce BD, Zhang SG, Baldo M (2004) Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett 4(6):1079–1083CrossRefGoogle Scholar
  58. Dasgupta-Schubert N, Tiwari DK, Francis ER, Torres PM, Cendejas LMV, Romero JL, Mora CV (2017) Plant responses to nano and micro structured carbon allotropes: water imbibition by maize seeds upon exposure to multiwalled carbon nanotubes and activated carbon. Adv Nano Res 5(3):245–251Google Scholar
  59. Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of silver nanoparticles on growth of eukaryotic green algae. Nano Micro Lett 4(3):158–165CrossRefGoogle Scholar
  60. Dauda S, Chia MA, Bako SP (2017) Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquat Toxicol 187:108–114PubMedCrossRefGoogle Scholar
  61. De La Torre-Roche R, Hawthorne J, Deng YQ, Xing BS, Cai WJ, Newman LA, Wang Q, Ma XM, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47(21):12539–12547CrossRefGoogle Scholar
  62. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539PubMedCrossRefGoogle Scholar
  63. Deng XY, Cheng J, Hu XL, Wang L, Li D, Gao K (2017) Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Sci Total Environ 575:87–96PubMedCrossRefGoogle Scholar
  64. Dewez D, Oukarroum A (2012) Silver nanoparticles toxicity effect on photosystem II photochemistry of the green alga Chlamydomonas reinhardtii treated in light and dark conditions. Toxicol Environ Chem 94(8):1536–1546CrossRefGoogle Scholar
  65. Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125CrossRefGoogle Scholar
  66. Du WC, Gardea-Torresdey JL, Ji R, Yin Y, Zhu JG, Peralta-Videa JR, Guo HY (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49(19):11884–11893PubMedCrossRefGoogle Scholar
  67. Du ST, Zhang P, Zhang RR, Lu Q, Liu L, Bao XW, Liu HJ (2016) Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus. Chemosphere 164:499–507PubMedCrossRefGoogle Scholar
  68. Du WC, Tan WJ, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo HY (2017a) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225PubMedCrossRefGoogle Scholar
  69. Du CL, Zhang B, He YL, Hu CY, Ng QX, Zhang H, Ong CN, Lin Z (2017b) Biological effect of aqueous C60 aggregates on Scenedesmus obliquus revealed by transcriptomics and non-targeted metabolomics. J Hazard Mater 324(Pt B):221–229PubMedCrossRefGoogle Scholar
  70. Du WC, Gardea-Torresdey JL, Xie YW, Yin Y, Zhu JG, Zhang XW, Ji R, Gu KH, Peralta-Videa JR, Guo HY (2017c) Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Sci Total Environ 578:408–416PubMedCrossRefGoogle Scholar
  71. Du WC, Tan WJ, Yin Y, Ji R, Peralta-Videa JR, Guo HY, Gardea-Torresdey JL (2018) Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Sci Total Environ 618:306–312PubMedCrossRefGoogle Scholar
  72. Duan PQ, Huang TT, Xiong W, Shu L, Yang YL, Shao CY, Xu XR, Ma WM, Tang RK (2017) Protection of photosynthetic algae against ultraviolet radiation by one-step CeO2 shellization. Langmuir 33(9):2454–2459PubMedCrossRefGoogle Scholar
  73. Ebrahimi A, Galavi M, Ramroudi M, Moaveni P (2016) Study of agronomic traits of pinto bean (Phaseolus vulgaris L.) under nano TiO2 spraying at various growth stages. Int J Pharm Res Allied Sci 5(2):458–471Google Scholar
  74. Efrati A, Lu CH, Michaeli D, Nechushtai R, Alsaoub S, Schuhmann W, Willner I (2016) Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes. Nat Energy 1:15021CrossRefGoogle Scholar
  75. El-Kassas HY, Okbah MA (2017) Phytotoxic effects of seaweed mediated copper nanoparticles against the harmful alga: Lyngbya majuscula. J Genet Eng Biotechnol 15(1):41–48PubMedPubMedCentralCrossRefGoogle Scholar
  76. European Commission (Last updated: 22/02/2017) Definition of a nanomaterial. Available on the web at http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm
  77. Falco WF, Queiroz AM, Fernandes J, Botero ER, Falcao EA, Guimaraes FEG, M’Peko JC, Oliveira SL, Colbeck I, Caires ARL (2015) Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching. J Photochem Photobiol A 299:203–209CrossRefGoogle Scholar
  78. Faraz M, Abbasi A, Naqvi FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sensors Actuators B 269:195–202.  https://doi.org/10.1016/j.snb.2018.04.110 CrossRefGoogle Scholar
  79. Farkas J, Booth AM (2017) Are fluorescence-based chlorophyll quantification methods suitable for algae toxicity assessment of carbon nanomaterials? Nanotoxicology 11(4):569–577PubMedCrossRefGoogle Scholar
  80. Fayez KA, El-Deeb BA, Mostafa NY (2017) Toxicity of biosynthetic silver nanoparticles on the growth, cell ultrastructure and physiological activities of barley plant. Acta Physiol Plant 39(7):155CrossRefGoogle Scholar
  81. Feifel SC, Lokstein H, Hejazi M, Zouni A, Lisdat F (2015) Unidirectional photocurrent of photosystem I on π-system-modified graphene electrodes: nanobionic approaches for the construction of photobiohybrid systems. Langmuir 31(38):10590–10598PubMedCrossRefGoogle Scholar
  82. Friebe VM, Millo D, Swainsbury DJK, Jones MR, Frese RN (2017) Cytochrome c provides an electron-funneling antenna for efficient photocurrent generation in a reaction center biophotocathode. ACS Appl Mater Interfaces 9(28):23379–23388PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187(4):201PubMedCrossRefGoogle Scholar
  84. Ghalamboran MR, Khavazi K (2013) Effect of magnetite nanoparticles on symbiotic nitrogen fixation and growth of soybean plants. J Biol Phys Chem 13(3):90–95CrossRefGoogle Scholar
  85. Ghodake G, Seo YD, Park D, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5(2):157–160CrossRefGoogle Scholar
  86. Ghorbanpour M, Fahimirad S (2017) Plant nanobionics a novel approach to overcome the environmental challenges. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer, Cham, pp 247–257CrossRefGoogle Scholar
  87. Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A (2011) Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater 197:327–336PubMedCrossRefGoogle Scholar
  88. Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res 774:49–58PubMedCrossRefGoogle Scholar
  89. Giordani T, Fabrizi A, Guidi L, Natali L, Giunti G, Ravasi F, Cavallini A, Pardossi A (2012) Response of tomato plants exposed to treatment with nanoparticles. EQA-Int J Environ Qual 8:27–38Google Scholar
  90. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408PubMedPubMedCentralCrossRefGoogle Scholar
  91. Giraldo JO, Landry MP, Kwak SY, Jain RM, Wong MH, Iverson NM, Ben-Naim M, Strano MS (2015) A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to in vivo monitoring. Small 12(32):3973–3984CrossRefGoogle Scholar
  92. Govorov AO, Carmeli I (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7(3):620–625PubMedCrossRefGoogle Scholar
  93. Gui X, Deng YQ, Rui YK, Gao BB, Luo WH, Chen SL, Nhan LV, Li XG, Liu ST, Han YN, Liu L, Xing B (2015) Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res 22(22):17716–17723CrossRefGoogle Scholar
  94. Gui X, Rui MM, Song YH, Ma YH, Rui YK, Zhang P, He X, Li YY, Zhang ZY, Liu LM (2017) Phytotoxicity of CeO2 nanoparticles on radish plant (Raphanus sativus). Environ Sci Pollut Res 24(15):13775–13781CrossRefGoogle Scholar
  95. Gunawan C, Sirimanoonphan A, Teoh WY, Marquis CP, Amal R (2013) Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. J Hazard Mater 26:984–992CrossRefGoogle Scholar
  96. Gunther D, LeBlanc G, Prasai D, Zhang JR, Cliffel DE, Bolotin KI, Jennings GK (2013) Photosystem I on graphene as a highly transparent, photoactive electrode. Langmuir 29(13):4177–4180PubMedCrossRefGoogle Scholar
  97. Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing AG, Switzerland, pp 247–266CrossRefGoogle Scholar
  98. Haghighi M, Teixeira da Silva JA (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 17(4):201–208CrossRefGoogle Scholar
  99. Hamdi H, De La Torre-Roche R, Hawthorne J, White JC (2015) Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology 9(2):172–180PubMedCrossRefGoogle Scholar
  100. Han XX, Zhao J, Wang ZY, Sui HJ, Xu LN (2016) Effect of TiO2 engineered nanoparticles at different aging times on the growth of Zea mays L. in soil. Asian J Ecotoxicol 11(2):642–649Google Scholar
  101. Hanif HU, Arshad M, Ali MA, Ahmed N, Qazi IA (2015) Phyto-availability of phosphorus to Lactuca sativa in response to soil applied TiO2 nanoparticles. Pak J Agric Sci 52(1):177–182Google Scholar
  102. Hao Y, Ma CX, Zhang ZT, Song YH, Cao WD, Guo J, Zhou GP, Rui YK, Liu LM, Xing BS (2018) Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 232:123–136PubMedCrossRefGoogle Scholar
  103. Hasan K, Milton RD, Grattieri M, Wang T, Stephanz M, Minteer SD (2017) Photobioelectrocatalysis of intact chloroplasts for solar energy conversion. ACS Catal 7(4):2257–2265CrossRefGoogle Scholar
  104. Hazeem LJ, Waheed FA, Rashdan S, Bououdina M, Brunet L, Slomianny C, Boukherroub R, Elmeselmani WA (2015) Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ Sci Pollut Res 22(15):11728–11739CrossRefGoogle Scholar
  105. Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R (2016) Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res 23(3):2821–2830CrossRefGoogle Scholar
  106. Hazeem LJ, Bououdina M, Dewailly E, Slomianny C, Barras A, Coffinier Y, Szunerits S, Boukherroub R (2017) Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine alga Picochlorum sp during different growth stages. Environ Sci Pollut Res 24(4):4144–4152CrossRefGoogle Scholar
  107. He ML, Yan YQ, Pei F, Wu MZ, Gebreluel T, Zou SM, Wang CH (2017) Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep 7:15526PubMedPubMedCentralCrossRefGoogle Scholar
  108. Homaee MB, Ehsanpour AA (2015) Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Indian J Plant Physiol 20(4):353–359CrossRefGoogle Scholar
  109. Hong H, Kim YJ, Han M, Yoo G, Song HW, Chae Y, Pyun JC, Grossman AR, Ryu WH (2018) Prolonged and highly efficient intracellular extraction of photosynthetic electrons from single algal cells by optimized nanoelectrode insertion. Nano Res 11(1):397–409CrossRefGoogle Scholar
  110. Hu XG, Kang J, Lu KC, Zhou RR, Mu L, Zhou QX (2014) Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 4:6122PubMedPubMedCentralCrossRefGoogle Scholar
  111. Hu CW, Wang Q, Zhao HT, Wang LZ, Guo SF, Li XL (2015a) Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere 128:184–190PubMedCrossRefGoogle Scholar
  112. Hu XG, Zhou M, Zhou QX (2015b) Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity. Environ Sci Technol 49(6):3410–3418PubMedCrossRefGoogle Scholar
  113. Hu XG, Ouyang SH, Mu L, An J, Zhou Q (2015c) Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles. Environ Sci Technol 49(18):10825–10833PubMedCrossRefGoogle Scholar
  114. Hu XG, Kang WL, Mu L (2017a) Aqueously released graphene oxide embedded in epoxy resin exhibits different characteristics and phytotoxicity of Chlorella vulgaris from the pristine form. Environ Sci Technol 51(10):5425–5433PubMedCrossRefGoogle Scholar
  115. Hu J, Guo HY, Li JL, Gan QL, Wang YQ, Xing BS (2017b) Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ Pollut 221:199–208PubMedCrossRefGoogle Scholar
  116. Hu J, Wu C, Ren HX, Wang YQ, Li JL, Huang J (2018) Comparative analysis of physiological impact of γ-Fe2O3 nanoparticles on dicotyledon and monocotyledon. J Nanosci Nanotechnol 18(1):743–752PubMedCrossRefPubMedCentralGoogle Scholar
  117. Huang TD, Sui MH, Yan X, Zhang X, Yuan Z (2016a) Anti-algae efficacy of silver nanoparticles to Microcystis aeruginosa: influence of NOM, divalent cations, and pH. Colloids Surf A Physicochem Eng Asp 509:492–503CrossRefGoogle Scholar
  118. Huang J, Cheng JP, Yi J (2016b) Impact of silver nanoparticles on marine diatom Skeletonema costatum. J Appl Toxicol 36(10):1343–1354PubMedCrossRefGoogle Scholar
  119. Husen A, Siddiqi K (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16CrossRefGoogle Scholar
  120. Iannone MF, Groppa MD, de Sousa ME, van Raap MBF, Benavides MP (2016) Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131:77–88CrossRefGoogle Scholar
  121. Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Bhalerao GM, Chakravarty S, Raichur AM, Chandrasekaran N, Mukherjee A (2015) Combined toxicity of two crystalline phases (anatase and rutile) of titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat Toxicol 161:154–169PubMedCrossRefGoogle Scholar
  122. Jalali M, Ghanati F, Modarres-Sanavi AM (2016) Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop Pasture Sci 67(6):621–628CrossRefGoogle Scholar
  123. Jalali M, Ghanati F, Modarres-Sanavi AM, Khoshgoftarmanesh AH (2017) Physiological effects of repeated foliar application of magnetite nanoparticles on maize plants. J Agron Crop Sci 203(6):593–602CrossRefGoogle Scholar
  124. Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22:321–361Google Scholar
  125. Jampílek J, Kráľová K (2017a) Nanopesticides: preparation, targeting and controlled release. In: Grumezescu AM (ed) Nanotechnology in food industry, vol. 10 – new pesticides and soil sensors. Academic Press & Elsevier, London, pp 81–127CrossRefGoogle Scholar
  126. Jampílek J, Kráľová K (2017b) Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer-Verlag, Berlin, Switzerland, pp 177–226CrossRefGoogle Scholar
  127. Jampílek J, Kráľová K (2018) Benefits and potential risks of nanotechnology applications in crop protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection, Springer-Verlag, Cham, pp 189–246Google Scholar
  128. Javed R, Usman M, Yucesan B, Zia M, Gurel E (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99PubMedCrossRefGoogle Scholar
  129. Ji J, Long ZF, Lin DH (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170(2–3):525–530CrossRefGoogle Scholar
  130. Ji Y, Zhou Y, Ma CX, Feng Y, Hao Y, Rui YK, Wu WH, Gui X, Le VN, Han YN, Wang Y, Xing B, Liu L, Cao W (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93PubMedCrossRefGoogle Scholar
  131. Jia JL, Jin XY, Zhu L, Zhang ZX, Liang WL, Wang GD, Zheng F, Wu XZ, Xu HH (2017) Enhanced intracellular uptake in vitro by glucose-functionalized nanopesticides. New J Chem 41(19):11398–11404CrossRefGoogle Scholar
  132. Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31(8):1880–1886PubMedCrossRefPubMedCentralGoogle Scholar
  133. Jiang HS, Yin LY, Ren NN, Zhao ST, Li Z, Zhi YW, Shao H, Li W, Gontero B (2017a) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11(2):157–167PubMedCrossRefPubMedCentralGoogle Scholar
  134. Jiang FP, Shen YZ, Ma CX, Zhang XW, Cao WD, Rui YK (2017b) Effects of TiO2 nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions. PLoS One 12(5):e0178088PubMedPubMedCentralCrossRefGoogle Scholar
  135. Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G (2017) Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J Sci Food Agric 98(8):3148–3160Google Scholar
  136. Jośko I, Oleszczuk P, Skwarek E (2017) Toxicity of combined mixtures of nanoparticles to plants. J Hazard Mater 331:200–209PubMedCrossRefPubMedCentralGoogle Scholar
  137. Kabiri S, Degryse F, Tran DNH, da Silva RC, McLaughlin MJ, Losic D (2017) Graphene oxide: a new carrier for slow release of plant micronutrients. ACS Appl Mater Interfaces 9(49):43325–43335PubMedCrossRefPubMedCentralGoogle Scholar
  138. Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119PubMedCrossRefPubMedCentralGoogle Scholar
  139. Kaniber SM, Simmel FC, Holleitner AW, Carmeli I (2009) The optoelectronic properties of a photosystem I-carbon nanotube hybrid system. Nanotechnology 20(34):345701PubMedCrossRefPubMedCentralGoogle Scholar
  140. Kaniber SM, Brandstetter M, Simmel FC, Carmeli I, Holleitner AW (2010) On-chip functionalization of carbon nanotubes with photosystem I. J Am Chem Soc 132(9):2872–2873PubMedCrossRefPubMedCentralGoogle Scholar
  141. Karimi J, Mohsenzadeh S (2017) Physiological effects of silver nanoparticles and silver nitrate toxicity in Triticum aestivum. Iran J Sci Technol Trans A Sci 41(A1):111–120CrossRefGoogle Scholar
  142. Karunakaran G, Jagathambal M, Gusev A, Kolesnikov E, Kuznetsov D (2017) Assessment of FeO and MnO nanoparticles toxicity on Chlorella pyrenoidosa. J Nanosci Nanotechnol 17(3):1712–1720CrossRefGoogle Scholar
  143. Kato M, Cardona T, Rutherford AW, Reisner E (2013) Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc 135(29):10610–10613PubMedPubMedCentralCrossRefGoogle Scholar
  144. Kavadiya S, Chadha TS, Liu HJ, Shah VB, Blankenship RE, Biswas P (2016) Directed assembly of the thylakoid membrane on nanostructured TiO2 for a photo-electrochemical cell. Nanoscale 8(4):1868–1872PubMedCrossRefPubMedCentralGoogle Scholar
  145. Kazemzadeh S, Riazi G, Ajeian R (2017) Novel approach of biophotovoltaic solid state solar cells based on a multilayer of PS1 complexes as an active layer. ACS Sustain Chem Eng 5(11):9836–9840CrossRefGoogle Scholar
  146. Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209PubMedPubMedCentralCrossRefGoogle Scholar
  147. Khanra A, Sangam S, Shakeel A, Suhag D, Mistry S, Rai MP, Chakrabarti S, Mukherjee M (2018) Sustainable growth and lipid production from Chlorella pyrenoidosa using N-doped carbon nanosheets: unravelling the role of graphitic nitrogen. ACS Sustain Chem Eng 6(1):774–780CrossRefGoogle Scholar
  148. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123PubMedCrossRefPubMedCentralGoogle Scholar
  149. Khunchuay C, Sompornpailin K (2017) A proper concentration of carbon black nanoparticles enhances growth of the regenerated vetiver grass. Pak J Bot 49(6):2333–2338Google Scholar
  150. Kim Y, Shin SA, Lee J, Yang KD, Nam KT (2014) Hybrid system of semiconductor and photosynthetic protein. Nanotechnology 25(34):342001PubMedCrossRefPubMedCentralGoogle Scholar
  151. Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49(2):1113–1119PubMedCrossRefPubMedCentralGoogle Scholar
  152. King AAK, Hanus MJ, Harris AT, Minett AI (2014) Nanocarbon-chlorophyll hybrids: self assembly and photoresponse. Carbon 80:746–754CrossRefGoogle Scholar
  153. Kole C, Kumar DS, Khodakovskaya MV (2016) Plant nanotechnology – principles and practices. Springer International Publishing, SwitzerlandGoogle Scholar
  154. Koman VB, Lew TTS, Wong MH, Kwak SY, Giraldo JP, Strano MS (2017) Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata in planta. Lab Chip 17(23):4015–4024PubMedCrossRefPubMedCentralGoogle Scholar
  155. Konate A, He X, Zhang ZY, Ma YH, Zhang P, Alugongo GM, Rui YK (2017) Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9(5):790CrossRefGoogle Scholar
  156. Korotkova AN, Lebedev SV, Kayumov FG, Sizova EA (2017) Biological effects of wheat (Triticum vulgare L.) under the influence metal nanoparticles (Fe, Cu, Ni) and their oxides (Fe3O4, CuO, NiO). Sel’skokhozyaistvennaya Biologiya 1:172–182Google Scholar
  157. Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH (2015) Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses. Environ Sci Pollut Res 22(14):10733–10743CrossRefGoogle Scholar
  158. Ksiazyk M, Asztemborska M, Steborowski R, Bystrzejewska-Piotrowska G (2015) Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bull Environ Contam Toxicol 94(5):554–558PubMedPubMedCentralCrossRefGoogle Scholar
  159. Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong JY, Liu AT, Koman VB, Sinclair R, Hamann K, Strano MS (2017a) Nanosensor technology applied to living plant systems. Annu Rev Anal Chem 10:113–140CrossRefGoogle Scholar
  160. Kwak SY, Giraldo JP, Wong MH, Koman VB, Lew TTS, Ell J, Weidman MC, Sinclair RM, Landry MP, Tisdale WA, Strano MS (2017b) A nanobionic light-emitting plant. Nano Lett 17(12):7951–7961CrossRefGoogle Scholar
  161. Lahiani MH, Chen JH, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619CrossRefGoogle Scholar
  162. Lahiani MH, Dervishi E, Ivanov I, Chen JH, Khodakovskaya M (2016) Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology 27(26):265102PubMedCrossRefPubMedCentralGoogle Scholar
  163. Lahiani MH, Nima ZA, Villagarcia HB, Biris AS, Khodakovskaya MV (2018) Assessment of effects of the long-term exposure of agricultural crops to carbon nanotubes. J Agric Food Chem 66(26):6654–6662PubMedCrossRefPubMedCentralGoogle Scholar
  164. Lambreva MD, Lavecchia T, Tyystjarvi E, Antal TK, Orlanducci S, Margonelli A, Rea G (2015) Potential of carbon nanotubes in algal biotechnology. Photosynth Res 125(3):451–471PubMedCrossRefPubMedCentralGoogle Scholar
  165. Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carriere M (2012a) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163PubMedCrossRefPubMedCentralGoogle Scholar
  166. Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carriere M (2012b) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75(13–15):722–734PubMedCrossRefPubMedCentralGoogle Scholar
  167. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012c) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208PubMedCrossRefPubMedCentralGoogle Scholar
  168. Lebedev SV, Korotkova AM, Osipova EA (2014) Influence of Fe-0 nanoparticles, magnetite Fe3O4 nanoparticles, and iron (II) sulfate (FeSO4) solutions on the content of photosynthetic pigments in Triticum vulgare. Russ J Plant Physiol 61(4):564–569CrossRefGoogle Scholar
  169. Lei C, Zhang LQ, Yang K, Zhu LZ, Lin DH (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512PubMedCrossRefPubMedCentralGoogle Scholar
  170. Li FM, Liang Z, Zheng X, Zhao W, Wu M, Wang ZY (2015a) Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquat Toxicol 158:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  171. Li S, Liu XQ, Wang FY, Miao YF (2015b) Effects of ZnO nanoparticles, ZnSO4 and arbuscular mycorrhizal fungus on the growth of maize. Huanjing Kexue 36(12):4615–4622PubMedPubMedCentralGoogle Scholar
  172. Li J, Naeem MS, Wang XP, Liu LX, Chen C, Ma N, Zhang CL (2015c) Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. PLoS One 10(12):e0143885PubMedPubMedCentralCrossRefGoogle Scholar
  173. Li J, Feng XY, Fei JB, Cai P, Huang JG, Li JB (2016a) Integrating photosystem II into a porous TiO2 nanotube network toward highly efficient photo-bioelectrochemical cells. J Mater Chem A 4(31):12197–12204CrossRefGoogle Scholar
  174. Li JL, Hu J, Ma CX, Wang YQ, Wu C, Huang J, Xing BS (2016b) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334PubMedCrossRefPubMedCentralGoogle Scholar
  175. Li YQ, Xiao R, Liu ZL, Liang XJ, Feng W (2017a) Cytotoxicity of NiO nanoparticles and its conversion inside Chlorella vulgaris. Chem Res Chin Univ 33(1):107–111CrossRefGoogle Scholar
  176. Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM (2017b) Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 11(5):699–709PubMedCrossRefGoogle Scholar
  177. Li BT, Chen YR, Liang WZ, Mu LL, Bridges WC, Jacobson AR, Darnault CJG (2017c) Influence of cerium oxide nanoparticles on the soil enzyme activities in a soil-grass microcosm system. Geoderma 299:54–62CrossRefGoogle Scholar
  178. Li J, Feng XY, Jia Y, Yang Y, Cai P, Huang JG, Li JB (2017d) Co-assembly of photosystem II in nanotubular indium-tin oxide multilayer films templated by cellulose substance for photocurrent generation. J Mater Chem A 5(37):19826–19835CrossRefGoogle Scholar
  179. Li YT, Tian H, Zhao HM, Jian MQ, Lv YJ, Tian Y, Wang Q, Yang Y, Xiang Y, Zhang YY, Ren TL (2018) A novel cell-scale bio-nanogenerator based on electron-ion interaction for fast light power conversion. Nanoscale 10(2):526–532PubMedCrossRefGoogle Scholar
  180. Liang CZ, Xiao HJ, Hu ZQ, Zhang X, Hu J (2018) Uptake, transportation, and accumulation of C60 fullerene and heavy metal ions (Cd, Cu, and Pb) in rice plants grown in an agricultural soil. Environ Pollut 235:330–338PubMedCrossRefGoogle Scholar
  181. Liu XQ, Wang FY, Shi ZY, Tong RJ, Shi XK (2015) Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. J Nanopart Res 17(4):175CrossRefGoogle Scholar
  182. Liu XY, Yao HZ, Ahmad F, Zhou Y (2016a) Photosynthetic toxicity of ZnO and TiO2 nanoparticles to Chlorella vulgaris. Nanomedicine 12(2):538–538CrossRefGoogle Scholar
  183. Liu RQ, Zhang HY, Lal R (2016b) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):42CrossRefGoogle Scholar
  184. Long ZF, Ji J, Yang K, Lin DH, Wu FC (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae. Environ Sci Technol 46(15):8458–8466PubMedCrossRefGoogle Scholar
  185. Lopez-Moreno ML, de la Rosa G, Cruz-Jimenez G, Castellano L, Peralta-Videa JR, Gardea-Torresdey JL (2017) Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies. Microchem J 134:54–61CrossRefGoogle Scholar
  186. Lv JT, Zhang SZ, Luo L, Zhang J, Yang K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci-Nano 2(1):68–77CrossRefGoogle Scholar
  187. Lyu SH, Wei XY, Chen JJ, Wang C, Wang XM, Pan DM (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:597PubMedPubMedCentralCrossRefGoogle Scholar
  188. Ma YH, Zhang P, Zhang ZY, He X, Li YY, Zhang J, Zheng LR, Chu SQ, Yang K, Zhao YL, Chai Z (2015) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9(2):262–270PubMedCrossRefGoogle Scholar
  189. Ma XM, Wang Q, Rossi L, Ebbs SD, White JC (2016a) Multigenerational exposure to cerium oxide nanoparticles: physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. Nanoimpact 1:46–54CrossRefGoogle Scholar
  190. Ma CX, Liu H, Guo HY, Musante C, Coskun SH, Nelson BC, White JC, Xing BS, Dhankher OP (2016b) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3(6):1369–1137CrossRefGoogle Scholar
  191. Majumdar S, Almeida IC, Arigi EA, Choi H, VerBerkmoes NC, Trujillo-Reyes J, Flores-Margez JP, White JC, Peralta-Videa JR, Gardea-Torresdey JL (2015) Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): a proteomic analysis. Environ Sci Technol 49(22):13283–13293PubMedCrossRefGoogle Scholar
  192. Maksimov EG, Kurashov VN, Mamedov MD, Paschenko VZ (2012) Hybrid system based on quantum dots and photosystem 2 core complex. Biochem Mosc 77(6):624–630CrossRefGoogle Scholar
  193. Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342CrossRefGoogle Scholar
  194. Manesh RR, Grassi G, Bergami E, Marques-Santos LF, Faleri C, Liberatori G, Corsi I (2018) Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol Environ Saf 148:359–366PubMedCrossRefGoogle Scholar
  195. Manzo S, Buono S, Rametta G, Miglietta M, Schiavo S, Di Francia G (2015) The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. Environ Sci Pollut Res 22(20):15941–15951CrossRefGoogle Scholar
  196. Marchello AE, Barreto DM, Lombardi AT (2018) Effects of titanium dioxide nanoparticles in different metabolic pathways in the freshwater microalga Chlorella sorokiniana (Trebouxiophyceae). Water Air Soil Pollut 229(2):48CrossRefGoogle Scholar
  197. Martinez-Ballesta MC, Zapata L, Chalbi N, Carvajal M (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol 14:42CrossRefGoogle Scholar
  198. Martinez-Fernandez D, Barroso D, Komarek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23(2):1732–1741CrossRefGoogle Scholar
  199. Masarovičová E, Kráľová K (2012) Plant-heavy metal interaction: phytoremediation, biofortification and nanoparticles. In: Montanaro G (ed) Advances in selected plant physiology aspects. Intech, Rjeka, pp 75–102Google Scholar
  200. Masarovičová E, Kráľová K (2013) Metal nanoparticles and plants. Ecol Chem Eng S 20:9–22Google Scholar
  201. Masarovičová E, Kráľová K (2017) Essential elements and toxic metals in some crops, medicinal plants, and trees. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 5. Springer International Publishing AG, Cham, pp 183–255CrossRefGoogle Scholar
  202. Masarovičová E, Kráľová K (2018) Woody species in phytoremediation applications for contaminated soils. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 6. Springer Nature Switzerland AG, Cham, pp 317–373CrossRefGoogle Scholar
  203. Masarovičová E, Kráľová K, Kummerová M (2010) Principles of classification of medicinal plants as hyperaccumulators or excluder. Acta Physiol Plant 32:823–829CrossRefGoogle Scholar
  204. Masarovičová E, Kráľová K, Šeršeň F (2011) Plant responses to toxic metal stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. CRC Press, Boca Raton, pp 595–634Google Scholar
  205. Masarovičová E, Kráľová K, Zinjarde SS (2014) Metal nanoparticles in plants. Formation and action. In: Pessarakli M (ed) Handbook of plant and crop physiology, 3rd edn. CRC, Taylor and Francis, Boca Raton, pp 683–731Google Scholar
  206. Matorin DN, Todorenko DA, Seifullina NK, Zayadan BK, Rubin AB (2013) Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P-700 reaction in the green alga Chlamydomonas reinhardtii. Microbiology 82(6):809–814CrossRefGoogle Scholar
  207. McGehee DL, Lahiani MH, Irin F, Green MJ, Khodakovskaya MV (2017) Multiwalled carbon nanotubes dramatically affect the fruit metabolome of exposed tomato plants. ACS Appl Mater Interfaces 9(38):32430–32435PubMedCrossRefGoogle Scholar
  208. Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142:431–440PubMedCrossRefGoogle Scholar
  209. Merdzan V, Domingos RF, Monteiro CE, Hadioui M, Wilkinson KJ (2014) The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga, C. reinhardtii. Sci Total Environ 488:316–324PubMedCrossRefGoogle Scholar
  210. Mershin A, Matsumoto K, Kaiser L, Yu DY, Vaughn M, Nazeeruddin MK, Bruce BD, Graetzel M, Zhang SG (2012) Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep 2:234PubMedPubMedCentralCrossRefGoogle Scholar
  211. Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9(77):3514–3527PubMedPubMedCentralCrossRefGoogle Scholar
  212. Miyachi M, Ikehira S, Nishiori D, Yamanoi Y, Yamada M, Iwai M, Tomo T, Allakhverdiev SI, Nishihara H (2017) Photocurrent generation of reconstituted photosystem II on a self-assembled gold film. Langmuir 33(6):1351–1358PubMedCrossRefGoogle Scholar
  213. Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, Karimzadeh F, Khazaei HR, Khorassani R (2017) Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf 144:543–551PubMedCrossRefGoogle Scholar
  214. Mohamed AKSH, Qayyum MF, Abdel-Hadi AM, Rehman RA, Ali S, Rizwan M (2017) Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci 63(12):1736–1747CrossRefGoogle Scholar
  215. Mohammadi R, Maali-Amiri R, Mantri NL (2014) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61(6):768–775CrossRefGoogle Scholar
  216. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519–4528CrossRefGoogle Scholar
  217. Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230PubMedCrossRefGoogle Scholar
  218. Morgalev NY, Kurovsky VA, Gosteva AI, Morgaleva GT, Morgalev SY, Burenina AA (2017) Influence of metal-containing nanoparticles on the content of photosynthetic pigments of unicellular alga Chlorella vulgaris Baijer. Nano Hybrid Composite 13:255–262Google Scholar
  219. Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springerplus 2:247PubMedPubMedCentralCrossRefGoogle Scholar
  220. Moustakas M, Malea P, Haritonidou K, Sperdouli I (2017) Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles. Environ Sci Pollut Res 24(19):16007–16018CrossRefGoogle Scholar
  221. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao LJ, Gardea-Torresdey JL (2014a) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138PubMedCrossRefGoogle Scholar
  222. Mukherjee A, Pokhrel S, Bandyopadhyay S, Maedler L, Peralta-Videa JR, Gardea-Torresdey JL (2014b) A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L.). Chem Eng J 258:394–401CrossRefGoogle Scholar
  223. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172PubMedPubMedCentralCrossRefGoogle Scholar
  224. Munk M, Brandao HM, Yepremian C, Coute A, Ladeira LO, Raposo NRB, Brayner R (2017) Effect of multi-walled carbon nanotubes on metabolism and morphology of filamentous green microalgae. Arch Environ Contam Toxicol 73(4):649–658PubMedCrossRefGoogle Scholar
  225. Mykhaylenko NF, Zolotareva EK (2017) The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale Res Lett 12:147PubMedPubMedCentralCrossRefGoogle Scholar
  226. Mysliwa-Kurdziel B, Prasad MNV, Strzalka K (2004) Photosynthesis in heavy metal stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 146–181CrossRefGoogle Scholar
  227. Nagy K, Magyar M, Szabo T, Hajdu K, Giotta L, Dorogi M, Milano F (2014) Photosynthetic machineries in nano-systems. Curr Protein Pept Sci 15(4):363–373CrossRefGoogle Scholar
  228. Nair PMG, Chung IM (2014a) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162(1–3):342–352PubMedCrossRefGoogle Scholar
  229. Nair PMG, Chung IM (2014b) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21(22):12709–12722CrossRefGoogle Scholar
  230. Nair PMG, Chung IM (2014c) Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Pollut Res 21(14):8858–8869CrossRefGoogle Scholar
  231. Nair PMG, Chung IM (2014d) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113PubMedCrossRefGoogle Scholar
  232. Nair PMG, Chung IM (2015a) The responses of germinating seedlings of green peas to copper oxide nanoparticles. Biol Plant 59(3):591–595CrossRefGoogle Scholar
  233. Nair PMG, Chung IM (2015b) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313PubMedCrossRefGoogle Scholar
  234. Nair PMG, Chung IM (2015c) Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiol Plant 37(1):1719Google Scholar
  235. Nair PMG, Chung IM (2017) Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Sci Total Environ 575:187–198PubMedCrossRefGoogle Scholar
  236. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  237. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12(3):2212–2220PubMedCrossRefGoogle Scholar
  238. Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36(11):2947–2958CrossRefGoogle Scholar
  239. National Nanotechnology Initiative (2008) Big things from a tiny world. National Nanotechnology Coordination Office, ArlingtonGoogle Scholar
  240. Nayan R, Rawat M, Negi B, Pande A, Arora S (2016) Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea. Biologia 71(8):896–902Google Scholar
  241. Nguyen K, Bruce BD (2014) Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. BBA Bioenergeics 1837(9):1553–1566CrossRefGoogle Scholar
  242. Nhan LV, Ma CX, Rui YK, Liu ST, Li XG, Xing BS, Liu LM (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618PubMedPubMedCentralCrossRefGoogle Scholar
  243. Nii D, Miyachi M, Shimada Y, Nozawa Y, Ito M, Homma Y, Ikehira S, Yamanoi Y, Nishihara H, Tomo T (2017) Conjugates between photosystem I and a carbon nanotube for a photoresponse device. Photosynth Res 133(1–3):155–162PubMedCrossRefGoogle Scholar
  244. Nowicka-Krawczyk P, Zelazna-Wieczorek J, Kozlecki T (2017) Silver nanoparticles as a control agent against facades coated by aerial algae – a model study of Apatococcus lobatus (green algae). PLoS One 12(8):e0183276PubMedPubMedCentralCrossRefGoogle Scholar
  245. Ocakoglu K, Krupnik T, van den Bosch B, Harputlu E, Gullo MP, Olmos JDJ, Yildirimcan S, Gupta RK, Yakuphanoglu F, Barbieri A, Reek JNH, Kargul J (2014) Photosystem I-based biophotovoltaics on nanostructured hematite. Adv Funct Mater 24(47):7467–7477CrossRefGoogle Scholar
  246. Oloumi H, Mousavi EA, Mohammadinejad R (2014) Multi-walled carbon nanotubes enhance Cd2+ and Pb2+ uptake by canola seedlings. Agrochimica 58(2):91–102Google Scholar
  247. Oukarroum A, Bras S, Perreault F, Popovic R (2012a) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85PubMedCrossRefGoogle Scholar
  248. Oukarroum A, Polchtchikov S, Perreault F, Popovic R (2012b) Temperature influence on silver nanoparticles inhibitory effect on photosystem II photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Environ Sci Pollut Res 19(5):1755–1762CrossRefGoogle Scholar
  249. Oukarroum A, Samadani M, Dewez D (2014) Influence of pH on the toxicity of silver nanoparticles in the green alga Chlamydomonas acidophila. Water Air Soil Pollut 225(8):2038CrossRefGoogle Scholar
  250. Oukarroum A, Zaidi W, Samadani M, Dewez D (2017) Toxicity of nickel oxide nanoparticles on a freshwater green algal strain of Chlorella vulgaris. Biomed Res Int 2017:9528180PubMedPubMedCentralCrossRefGoogle Scholar
  251. Ouyang SH, Hu XG, Zhou QX (2015) Envelopment-internalization synergistic effects and metabolic mechanisms of graphene oxide on single-cell Chlorella vulgaris are dependent on the nanomaterial particle size. ACS Appl Mater Interfaces 7(32):18104–18112PubMedCrossRefGoogle Scholar
  252. Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM, Chandrasekaran N, Mukherjee A (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One 9(2):e87789PubMedPubMedCentralCrossRefGoogle Scholar
  253. Palmqvist NGM, Seisenbaeva GA, Svedlindh P, Kessler VG (2017) Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res Lett 12:631PubMedPubMedCentralCrossRefGoogle Scholar
  254. Pamu R, Sandireddy VP, Kalyanaraman R, Khomami B, Mukherjee D (2018) Plasmon-enhanced photocurrent from photosystem I assembled on Ag nanopyramids. J Phys Chem Lett 9(5):970–977PubMedCrossRefPubMedCentralGoogle Scholar
  255. Pandey C, Khan E, Mishra A, Sardar M, Gupta M (2014) Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L. (Indian mustard) plant. Adv Sci Lett 20(7–9):1673–1676CrossRefGoogle Scholar
  256. Pardha-Saradhi P, Shabnam N, Sharmila P, Ganguli A, Kim H (2018) Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver. Chemosphere 194:340–351PubMedCrossRefPubMedCentralGoogle Scholar
  257. Pariona N, Martinez AI, Hdz-Garcia HM, Cruz LA, Hernandez-Valdes A (2017) Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J Biol Sci 24(7):1547–1554PubMedCrossRefPubMedCentralGoogle Scholar
  258. Park S, Ahn YJ (2016) Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination, chlorophyll content, and hydrogen peroxide accumulation in carrot (Daucus carota L.). Biocatal Agric Biotechnol 8:257–262CrossRefGoogle Scholar
  259. Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9(5):1649–1662PubMedPubMedCentralCrossRefGoogle Scholar
  260. Pavani T, Rao KV, Chakra CS, Prabhu YT (2016) Synthesis and characterization of γ-ferric oxide nanoparticles and their effect on Solanum lycopersicum. Environ Sci Pollut Res 23(10):9373–9380CrossRefGoogle Scholar
  261. Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Toxicol 66:727–734PubMedPubMedCentralGoogle Scholar
  262. Pereira MM, Mouton L, Yepremian C, Coute A, Lo J, Marconcini JM, Ladeira LO, Raposo NRB, Brandao HM, Brayner R (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12:15CrossRefGoogle Scholar
  263. Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87(11):1388–1394PubMedCrossRefPubMedCentralGoogle Scholar
  264. Perreault F, Popovic R, Dewez D (2014a) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227PubMedCrossRefPubMedCentralGoogle Scholar
  265. Perreault F, Samadani M, Dewez D (2014b) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8(4):374–382PubMedCrossRefPubMedCentralGoogle Scholar
  266. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332PubMedCrossRefPubMedCentralGoogle Scholar
  267. Prakash MG, Chung IM (2016) Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings. Acta Biol Hung 67(3):286–296PubMedCrossRefPubMedCentralGoogle Scholar
  268. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927CrossRefGoogle Scholar
  269. Prasad TNVKV, Adam S, Rao PV, Reddy BR, Krishna TG (2017) Size dependent effects of antifungal phytogenic silver nanoparticles on germination, growth and biochemical parameters of rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). IET Nanobiotechnol 11(3):277–285PubMedCrossRefPubMedCentralGoogle Scholar
  270. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713Google Scholar
  271. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014
  272. Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM, Schimel JP, Goggi AS, Gardea-Torresdey JL, Holden PA (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci Total Environ 579:1756–1768PubMedCrossRefPubMedCentralGoogle Scholar
  273. Pugliara A, Makasheva K, Despax B, Bayle M, Carles R, Benzo P, BenAssayag G, Pecassou B, Sancho MC, Navarro E, Echegoyen Y, Bonafos C (2016) Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors. Sci Total Environ 565:863–871PubMedCrossRefPubMedCentralGoogle Scholar
  274. Qi MF, Liu YF, Li TL (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1–3):323–328PubMedCrossRefPubMedCentralGoogle Scholar
  275. Qian HF, Peng XF, Han X, Ren J, Sun LW, Fu ZW (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1955CrossRefGoogle Scholar
  276. Racuciu M, Creanga D (2017) Magnetite/tartaric acid nanosystems for experimental study of bioeffects on Zea mays growth. Rom. J Phys 62(3–4):804Google Scholar
  277. Rajak J, Bawaskar M, Rathod D, Agarkar G, Nagaonkar D, Gade A, Rai M (2017) Interaction of copper nanoparticles and an endophytic growth promoter Piriformospora indica with Cajanus cajan. J Sci Food Agric 97(13):4562–4570PubMedCrossRefPubMedCentralGoogle Scholar
  278. Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep (Amst) 5:22–26CrossRefGoogle Scholar
  279. Raliya R, Tarafdar JC, Biswas P (2016) Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64(16):3111–3118PubMedCrossRefPubMedCentralGoogle Scholar
  280. Rani PU, Yasur J, Loke KS, Dutta D (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38(2):58CrossRefGoogle Scholar
  281. Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2(1):105–114CrossRefGoogle Scholar
  282. Ravi SK, Tan SC (2015) Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing. Energy Environ Sci 8(9):2551–2573CrossRefGoogle Scholar
  283. Rawat M, Nayan R, Negi B, Zaidi MGH, Arora S (2017) Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. juncea. Plant Physiol Biochem 118:274–284PubMedCrossRefPubMedCentralGoogle Scholar
  284. Rawat S, Pullagurala VLR, Hernandez-Molina M, Sun YP, Niu GH, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Environ Sci-Nano 5(1):83–95CrossRefGoogle Scholar
  285. Ren WJ, Chang HW, Teng Y (2016) Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings. Sci Total Environ 572:926–934PubMedCrossRefPubMedCentralGoogle Scholar
  286. Reyes VC, Spitzmiller MR, Hong-Hermesdorf A, Kropat J, Damoiseaux RD, Merchant SS, Mahendra S (2016) Copper status of exposed microorganisms influences susceptibility to metallic nanoparticles. Environ Toxicol Chem 35(5):1148–1158PubMedPubMedCentralCrossRefGoogle Scholar
  287. Richardson JJ, Liang K (2018) Nano-biohybrids: in vivo synthesis of metal-organic frameworks inside living plants. Small 14(3):1702958CrossRefGoogle Scholar
  288. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Perata-Videa JR, Gardea-Torresdey JL (2013a) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61(47):11278–11285PubMedCrossRefPubMedCentralGoogle Scholar
  289. Rico CM, Hong J, Morales MI, Zhao LJ, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642PubMedCrossRefPubMedCentralGoogle Scholar
  290. Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62(40):9669–9675PubMedCrossRefPubMedCentralGoogle Scholar
  291. Rico CM, Johnson MG, Marcus MA, Andersen CP (2017) Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. Environ Sci Nano 4(3):700–711PubMedPubMedCentralCrossRefGoogle Scholar
  292. Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248CrossRefGoogle Scholar
  293. Rodriguez E, Santos MD, Azevedo R, Correia C, Moutinho-Pereira J, de Oliveira JMPF, Dias MC (2015) Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar. Environ Sci Pollut Res 22(1):574–585PubMedCrossRefPubMedCentralGoogle Scholar
  294. Roehder L, Brandt T, Sigg L, Behra R (2014) Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat Toxicol 152:121–130CrossRefGoogle Scholar
  295. Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7(1):50–60CrossRefGoogle Scholar
  296. Rossi L, Zhang W, Lombardini L, Ma XM (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36PubMedCrossRefPubMedCentralGoogle Scholar
  297. Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15:33CrossRefGoogle Scholar
  298. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:925494CrossRefGoogle Scholar
  299. Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmussp. and Chlorella sp. Ecotoxicol Environ Saf 74(5):1180–1187PubMedCrossRefGoogle Scholar
  300. Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96(2):109–114PubMedCrossRefGoogle Scholar
  301. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017a) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97CrossRefGoogle Scholar
  302. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017b) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 1–17Google Scholar
  303. Saxena M, Maity S, Sarkar S (2014) Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Adv 4(75):39948–39954CrossRefGoogle Scholar
  304. Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144PubMedCrossRefGoogle Scholar
  305. Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47(13):7012–7019PubMedCrossRefGoogle Scholar
  306. Schwabe F, Schulin R, Limbach LK, Stark W, Buerge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512–520PubMedCrossRefGoogle Scholar
  307. Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, Nowack B (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7(3):466–477PubMedCrossRefGoogle Scholar
  308. Sekar N, Ramasamy RP (2015) Recent advances in photosynthetic energy conversion. J Photochem Photobiol C 22:19–33CrossRefGoogle Scholar
  309. Sekar N, Umasankar Y, Ramasamy RP (2014) Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Phys Chem Chem Phys 16(17):7862–7871PubMedCrossRefGoogle Scholar
  310. Sendra M, Yeste PM, Moreno-Garrido I, Gatica JM, Blasco J (2017) CeO2 NPs, toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity. Sci Total Environ 590:304–315PubMedCrossRefGoogle Scholar
  311. Servin AD, Morales MI, Castillo-Michel H, Hemandez-Viezcas JA, Munoz B, Zhao LJ, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598PubMedCrossRefGoogle Scholar
  312. Shabnam N, Sharmila P, Pardha-Saradhi P (2017) Impact of ionic and nanoparticle speciation states of silver on light harnessing photosynthetic events in Spirodela polyrhiza. Int J Phytorem 19(1):80–86CrossRefGoogle Scholar
  313. Shah VB, Henson WR, Chadha TS, Lakin G, Liu HJ, Blankenship RE, Biswas P (2015) Linker-free deposition and adhesion of photosystem I onto nanostructured TiO2 for biohybrid photoelectrochemical cells. Langmuir 31(5):1675–1682PubMedCrossRefGoogle Scholar
  314. Shallan MA, Hassan HMM, Namich AAM, Ibrahim AA (2016) Biochemical and physiological effects of TiO2 and SiO2 nanoparticles on cotton plant under drought stress. Res J Pharm Biol Chem Sci 7(4):1540–1551Google Scholar
  315. Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6(7):983–990CrossRefGoogle Scholar
  316. Sharma S, Uttam KN (2017) Rapid analyses of stress of copper oxide nanoparticles on wheat plants at an early stage by laser induced fluorescence and attenuated total reflectance Fourier transform infrared spectroscopy. Vib Spectrosc 92:135–150CrossRefGoogle Scholar
  317. Sharon M, Sharon M (2010) Carbon nano forms and applications. McGraw Hill Professional, New YorkGoogle Scholar
  318. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  319. Shen CX, Zhang QF, Li JA, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609PubMedCrossRefGoogle Scholar
  320. Shende S, Rathod D, Gade A, Rai M (2017) Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol 11(7):773–781Google Scholar
  321. Sheteiwy MS, Dong Q, An JY, Song WJ, Guan YJ, He F, Huang YT, Hu J (2017) Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regul 83(1):27–41CrossRefGoogle Scholar
  322. Shi JY, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159(5):1277–1282PubMedPubMedCentralCrossRefGoogle Scholar
  323. Shon Y, Kim H, Hwang HS, Bae ES, Eom T, Park EJ, Ahn WS, Wie JJ, Shim BS (2017) A nanostructured cell-free photosynthetic biocomposite via molecularly controlled layer-by-layer assembly. Sens Actuator B-Chem 244:1–10CrossRefGoogle Scholar
  324. Shweta, Tripathi DK, Singh S, Singh S, Dubey NK, Chauhan DK (2016) Impact of nanoparticles on photosynthesis: challenges and opportunities. Mater Focus 5(5):405–411CrossRefGoogle Scholar
  325. Siddiqui MH, Al-Whaibi MH, Mohammad F (2015) Nanotechnology and plant sciences – nanoparticles and their impact on plants. Springer International Publishing, SwitzerlandGoogle Scholar
  326. Silva S, Oliveira H, Craveiro SC, Calado AJ, Santos C (2016) Pure anatase and rutile plus anatase nanoparticles differently affect wheat seedlings. Chemosphere 151:68–75PubMedCrossRefGoogle Scholar
  327. Silva S, Oliveira H, Silva AMS, Santos C (2017a) The cytotoxic targets of anatase or rutile plus anatase nanoparticles depend on the plant species. Biol Plant 61(4):717–725CrossRefGoogle Scholar
  328. Silva S, Craveiro S, Oliveira H, Calado AJ, Pinto RJB, Silva AMS, Santos C (2017b) Wheat chronic exposure to TiO2-nanoparticles: cyto- and genotoxic approach. Plant Physiol Biochem 121:89–98PubMedCrossRefGoogle Scholar
  329. Singh A, Singh NB, Hussain I, Singh H (2017) Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol 262:11–27PubMedCrossRefGoogle Scholar
  330. Sohn EK, Chung YS, Johari SA, Kim TG, Kim JK, Lee JH, Lee YH, Lang SW, Yu IJ (2015) Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. Biomed Res Int 2015:323090PubMedPubMedCentralGoogle Scholar
  331. Song GL, Hou WH, Gao Y, Wang Y, Lin L, Zhang ZW, Niu Q, Ma RL, Mu LT, Wang HX (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3PubMedPubMedCentralCrossRefGoogle Scholar
  332. Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85(2):245–257PubMedCrossRefGoogle Scholar
  333. Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51(13):7361–7368PubMedCrossRefGoogle Scholar
  334. Stewart J, Hansen T, McLean JE, McManus P, Das S, Britt DW, Anderson AJ, Dimkpa CO (2015) Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Environ Toxicol Chem 34(9):2116–2125PubMedCrossRefGoogle Scholar
  335. Stiborová M, Doubravová M, Leblová S (1986) A comparative study of the effect of heavy metal ions on ribulose-1,5-bisphosphate carboxylase and phosphoenol pyruvate carboxylase. Biochem Physiol Pflanz 181(6):373–379CrossRefGoogle Scholar
  336. Stieger KR, Feifel SC, Lokstein H, Hejazi M, Zouni A, Lisdat F (2016a) Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes. J Mater Chem A 4(43):17009–17017CrossRefGoogle Scholar
  337. Stieger KR, Ciornii D, Koelsch A, Hejazi M, Lokstein H, Feifel SC, Zouni A, Lisdat F (2016b) Engineering of supramolecular photoactive protein architectures: the defined co-assembly of photosystem I and cytochrome c using a nanoscaled DNA-matrix. Nanoscale 8(20):10695–10705PubMedCrossRefGoogle Scholar
  338. Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J Agric Food Chem 64(19):3778–3788PubMedCrossRefGoogle Scholar
  339. Sun Y, Guo F, Zuo TF, Hua JJ, Diao GW (2016) Stimulus-responsive light-harvesting complexes based on the pillararene-induced co-assembly of β-carotene and chlorophyll. Nat Commun 7:12042PubMedPubMedCentralCrossRefGoogle Scholar
  340. Sunda WG (2006) Trace metals and harmful algal blooms. In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer, The Netherlands, pp 203–214CrossRefGoogle Scholar
  341. Swapna MS, Beryl C, Reshma SS, Chandran V, Vishnu VS, Radhamany PM, Sankararaman S (2017) Ultraviolet protection action of carbon nanoparticles in leaves. Bionanoscience 7(4):583–587CrossRefGoogle Scholar
  342. Szabo T, Magyar M, Hajdu K, Dorogi M, Nyerki E, Toth T, Lingvay M, Garab G, Hernadi K, Nagy L (2015) Structural and functional hierarchy in photosynthetic energy conversion-from molecules to nanostructures. Nanoscale Res Lett 10:458PubMedPubMedCentralCrossRefGoogle Scholar
  343. Szalkowski M, Olmos JDJ, Buczynska D, Mackowski S, Kowalska D, Kargul J (2017) Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins assembled on silver nanowires. Nanoscale 9(29):10475–10486PubMedCrossRefGoogle Scholar
  344. Šeršeň F, Kráľová K (2001) New facts about CdCl2 action on the photosynthetic apparatus of spinach chloroplasts and its comparison with HgCl2 action. Photosynthetica 39(4):575–580CrossRefGoogle Scholar
  345. Šeršeň F, Kráľová K, Bumbálová A, Švajlenová O (1997) The effect of Cu(II) ions bound with tridentate Schiff base ligands upon the photosynthetic apparatus. J Plant Physiol 151(3):299–305CrossRefGoogle Scholar
  346. Šeršeň F, Kráľová K, Bumbálová A (1998) Action of mercury on the photosynthetic apparatus of spinach chloroplasts. Photosynthetica 35(4):551–559CrossRefGoogle Scholar
  347. Šeršeň F, Kráľová K, Peško M, Cigáň M (2014) Effect of Pb2+ ions on photosynthetic apparatus. Gen Physiol Biophys 33(1):131–136PubMedCrossRefGoogle Scholar
  348. Tahara K, Mohamed A, Kawahara K, Nagao R, Kato Y, Fukumura H, Shibata Y, Noguchi T (2017) Fluorescence property of photosystem II protein complexes bound to a gold nanoparticle. Faraday Discuss 198:121–134PubMedCrossRefGoogle Scholar
  349. Tan XM, Fugetsu B (2007) Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3(3):285–288CrossRefGoogle Scholar
  350. Tang YL, Tian JL, Li SY, Xue CH, Xue ZH, Yin DQ, Yu SL (2015) Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Sci Total Environ 532:154–161PubMedCrossRefGoogle Scholar
  351. Tao XJ, Yu YX, Fortner JD, He YL, Chen YS, Hughes JB (2015) Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: evaluation of the sub-lethal photosynthetic responses and inhibition mechanism. Chemosphere 122:162–167PubMedCrossRefGoogle Scholar
  352. Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR (2016) Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology 10(1):32–41PubMedGoogle Scholar
  353. Thakkar M, Mitra S, Wei LP (2016) Nanotubes exposure to marine alga Dunaliella tertiolecta. J Nanomater 2016:838049.1CrossRefGoogle Scholar
  354. Tiwari DK, Dasgupta-Schubert N, Cendejas LMV, Villegas J, Montoya LC, Garcia SEB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591CrossRefGoogle Scholar
  355. Tiwari M, Sharma NC, Fleischmann P, Burbage J, Venkatachalam P, Sahi SV (2017) Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Front Plant Sci 8:633PubMedPubMedCentralCrossRefGoogle Scholar
  356. Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39(2):172–180CrossRefGoogle Scholar
  357. Tripathi S, Kapri S, Datta A, Bhattacharyya S (2016) Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant. RSC Adv 6(50):43864–43873CrossRefGoogle Scholar
  358. Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017a) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12PubMedCrossRefGoogle Scholar
  359. Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Singh VP, Singh PK, Prasad SM, Dubey NK, Pandey AC, Sahi S, Chauhan DK (2017b) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:1PubMedPubMedCentralCrossRefGoogle Scholar
  360. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017c) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177PubMedCrossRefGoogle Scholar
  361. Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263PubMedCrossRefGoogle Scholar
  362. Turner A, Brice D, Brown MT (2012) Interactions of silver nanoparticles with the marine macroalga, Ulva lactuca. Ecotoxicology 21(1):148–154PubMedCrossRefPubMedCentralGoogle Scholar
  363. von Moos N, Maillard L, Slaveykova VI (2015) Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquat Toxicol 161:267–275CrossRefGoogle Scholar
  364. Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127PubMedCrossRefPubMedCentralGoogle Scholar
  365. Vishwakarma K, Shweta, Upadhyay N, Singh J, Liu SL, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501PubMedPubMedCentralCrossRefGoogle Scholar
  366. Vithanage M, Seneviratne M, Ahmad M, Sarkar B, Ok YS (2017) Contrasting effects of engineered carbon nanotubes on plants: a review. Environ Geochem Health 39(6):1421–1439PubMedCrossRefGoogle Scholar
  367. Wang Y, Yang KJ (2013) Toxicity of single-walled carbon nanotubes on green microalga Chromochloris zofingiensis. Chin J Oceanol Limnol 31(2):306–311CrossRefGoogle Scholar
  368. Wang JX, Zhang XZ, Chen YS, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73(7):1121–1128PubMedCrossRefGoogle Scholar
  369. Wang ZY, Yu XL, Gao DM, Feng WQ, Xing BS, Li FM (2010) Effect of nano-rutile TiO2 and multiwalled carbon nanotubes on the growth of maize (Zea mays L.) seedlings and the relevant antioxidant response. Huanjing Kexue 31(2):480–487PubMedGoogle Scholar
  370. Wang XP, Han HY, Liu XQ, Gu XX, Chen K, Lu DL (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14(6):841CrossRefGoogle Scholar
  371. Wang WZ, Wang FY, Li S, Liu XQ (2014) Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize. Huanjing Kexue 35(8):3135–3141PubMedGoogle Scholar
  372. Wang CL, Zhang H, Ruan LF, Chen LY, Li HL, Chang XL, Zhang X, Yang ST (2016a) Bioaccumulation of C-13-fullerenol nanomaterials in wheat. Environ Sci-Nano 3(4):799–805CrossRefGoogle Scholar
  373. Wang YX, Zhu XS, Lao YM, Lv XH, Tao Y, Huang BM, Wang JX, Zhou J, Cai ZH (2016b) TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci Total Environ 565:818–826PubMedCrossRefGoogle Scholar
  374. Wang FY, Liu XQ, Shi ZY, Tong RJ, Adams CA, Shi XK (2016c) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants – a soil microcosm experiment. Chemosphere 147:88–97PubMedCrossRefGoogle Scholar
  375. Wang J, Fang ZQ, Cheng W, Tsang PE, Zhao DY (2016d) Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Ecotoxicology 25(6):1202–1210PubMedCrossRefGoogle Scholar
  376. Watson JL, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28(1):101–112PubMedCrossRefPubMedCentralGoogle Scholar
  377. Werwie M, Dworak L, Bottin A, Mayer L, Basche T, Wachtveitl J, Paulsen H (2017) Light-harvesting chlorophyll protein (LHCII) drives electron transfer in semiconductor nanocrystals. Biochim Biophys Acta 1859(3):174–181CrossRefGoogle Scholar
  378. Whitmarsh J, Govindjee G (1999) The photosynthetic process. In: Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Kluwer Academic, Dordrecht, pp 11–51CrossRefGoogle Scholar
  379. Wong MH, Giraldo JP, Kwak SY, Koman VB, Sinclair R, Lew TTS, Bisker G, Liu PW, Strano MS (2017) Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater 16(2):264–272CrossRefGoogle Scholar
  380. Wu BY, Zhu LZ, Le XC (2017a) Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ Pollut 230:302–310PubMedCrossRefPubMedCentralGoogle Scholar
  381. Wu H, Santana I, Dansie J, Giraldo JP (2017b) In vivo delivery of nanoparticles into plant leaves. Curr Protoc Chem Biol 9(4):269–284PubMedCrossRefPubMedCentralGoogle Scholar
  382. Wu HH, Tito N, Giraldo JP (2017c) Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11(11):11283–11297CrossRefGoogle Scholar
  383. Xia B, Sui Q, Sun X, Han Q, Chen B, Zhu L, Qu K (2018) Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgaris. J Hazard Mater 346:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  384. Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22(14):10452–10462CrossRefGoogle Scholar
  385. Xu JB, Wang YL, Luo XS, Feng YZ (2017) Influence of Fe3O4 nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community structure. Yingyong Shengtai Xuebao 28(9):3003–3010Google Scholar
  386. Xun HW, Ma XT, Chen J, Yang ZZ, Liu B, Gao X, Li G, Yu JM, Wang L, Pang JS (2017) Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots. Environ Pollut 229:479–488PubMedCrossRefPubMedCentralGoogle Scholar
  387. Yagishita T, Horigome T, Tanaka K (1993) Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp. J Chem Technol Biotechnol 56(4):393–399CrossRefGoogle Scholar
  388. Yan SH, Zhao L, Li H, Zhang Q, Tan JJ, Huang M, He SB, Li LJ (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118PubMedCrossRefPubMedCentralGoogle Scholar
  389. Yan SH, Zhang H, Huang Y, Tan JJ, Wang P, Wang YP, Hou HL, Huang J, Li LJ (2016) Single-wall and multi-wall carbon nanotubes promote rice root growth by eliciting the similar molecular pathways and epigenetic regulation. IET Nanobiotechnol 10(4):222–229PubMedCrossRefPubMedCentralGoogle Scholar
  390. Yang XJ, Chen H, Yan H, Qin B (2010a) Effects of nano-TiO2 and single-walled carbon nanotubes on the growth of Chlorella vulgaris. Asian J Ecotoxicol 5(1):38–43Google Scholar
  391. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010b) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138CrossRefGoogle Scholar
  392. Yang ZZ, Chen J, Dou RZ, Gao X, Mao CB, Wang L (2015) Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int J Environ Res Public Health 12(12):15100–15109PubMedPubMedCentralCrossRefGoogle Scholar
  393. Yang XP, Pan HP, Wang P, Zhao FJ (2017) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater 322(Pt A):292–300PubMedCrossRefPubMedCentralGoogle Scholar
  394. Yasmeen F, Raja NI, Razzaq A, Komatsu S (2016) Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure. Biochim Biophys Acta 1864(11):1586–1598PubMedCrossRefPubMedCentralGoogle Scholar
  395. Yasmeen F, Raja NI, Razzaq A, Komatsu S (2017) Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim Biophys Acta 1865(1):28–42CrossRefGoogle Scholar
  396. Yehezkeli O, Tel-Vered R, Michaeli D, Nechushtai R, Willner I (2013) Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. Small 9(17):2970–2978PubMedCrossRefPubMedCentralGoogle Scholar
  397. Yi ZF, Hussain HI, Feng CF, Sun DQ, She FH, Rookes JE, Cahill DM, Kong LG (2015) Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS Appl Mater Interfaces 7(18):9937–9946PubMedPubMedCentralCrossRefGoogle Scholar
  398. Yoon SJ, Kwak JI, Lee WM, Holden PA, An YJ (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137PubMedCrossRefPubMedCentralGoogle Scholar
  399. Yuan HG, Hu SL, Huang P, Song H, Wang K, Ruan J, He R, Cui DX (2011) Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells. Nanoscale Res Lett 6:44PubMedPubMedCentralGoogle Scholar
  400. Yue L, Ma CX, Zhan XH, White JC, Xing BS (2017) Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction. Environ Sci Nano 4(4):843–855CrossRefGoogle Scholar
  401. Yung MMN, Wong SWY, Kwok KWH, Liu FZ, Leung YH, Chan WT, Li XY, Djurisic AB, Leung KMY (2015) Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquat Toxicol 165:31–40PubMedCrossRefPubMedCentralGoogle Scholar
  402. Yung MMN, Fougeres PA, Leung YH, Liu FZ, Djurisic AB, Giesy JP, Leung KMY (2017) Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae. Sci Rep 7:15909PubMedPubMedCentralCrossRefGoogle Scholar
  403. Yurela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156CrossRefGoogle Scholar
  404. Zahra Z, Arshad M, Rafique R, Mahmood A, Habib A, Qazi IA, Khan SA (2015) Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J Agric Food Chem 63(31):6876–6882PubMedCrossRefGoogle Scholar
  405. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17CrossRefGoogle Scholar
  406. Zaytseva O, Wang ZR, Neumann G (2017) Phytotoxicity of carbon nanotubes in soybean as determined by interactions with micronutrients. J Nanopart Res 19(2):29CrossRefGoogle Scholar
  407. Zhai GS, Gutowski SM, Walters KS, Yan B, Schnoor JL (2015) Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol 49(12):7380–7390PubMedCrossRefGoogle Scholar
  408. Zhang LQ, Lei C, Chen JJ, Yang K, Zhu LZ, Lin DH (2015a) Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae. Carbon 83:198–207CrossRefGoogle Scholar
  409. Zhang M, Gao B, Chen JJ, Li YC (2015b) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17(2):78CrossRefGoogle Scholar
  410. Zhang RC, Zhang HB, Tu C, Hu XF, Li LZ, Luo YM, Christie P (2015c) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22(14):11109–11117CrossRefGoogle Scholar
  411. Zhang WL, Ebbs SD, Musante C, White JC, Gao CM, Ma XM (2015d) Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). J Agric Food Chem 63(2):382–390PubMedCrossRefGoogle Scholar
  412. Zhang P, Ma YH, Zhang ZY, He X, Li YY, Zhang J, Zheng LR, Zhao YL (2015e) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9(1):1–8PubMedCrossRefGoogle Scholar
  413. Zhang P, Zhang RR, Fang XZ, Song TQ, Cai XD, Liu HJ, Du ST (2016) Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short- and long-term exposure studies. J Hazard Mater 317:543–551PubMedCrossRefGoogle Scholar
  414. Zhang H, Yue MX, Zheng XK, Xie CS, Zhou H, Li LJ (2017a) Physiological effects of single- and multi-walled carbon nanotubes on rice seedlings. IEEE Trans Nanobioscience 16(7):563–570PubMedCrossRefGoogle Scholar
  415. Zhang L, Goswami N, Xie JP, Zhang B, He YL (2017b) Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus. Sci Rep 7:16432PubMedPubMedCentralCrossRefGoogle Scholar
  416. Zhang TN, Liu C, Dong WJ, Wang WD, Sun Y, Chen X, Yang CH, Dai N (2017c) Photovoltaic conversion with a high open-circuit photovoltage. Chem Asian J 12(23):2996–2999PubMedCrossRefGoogle Scholar
  417. Zhao LJ, Peng B, Hernandez-Viezcas JA, Rico C, Sun YP, Peralta-Videa JR, Tang XL, Niu GH, Jin LX, Varela-Ramirez A, Zhang JY, Gardea-Torresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622PubMedPubMedCentralCrossRefGoogle Scholar
  418. Zhao LJ, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15(1):260–266CrossRefGoogle Scholar
  419. Zhao LJ, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun YP, Niu GH, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014a) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759PubMedCrossRefGoogle Scholar
  420. Zhao LJ, Peralta-Videa JR, Peng B, Bandyopadhyay S, Corral-Diaz B, Osuna-Avila P, Montes MO, Keller AA, Gardea-Torresdey JL (2014b) Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil. J Environ Sci 26(2):382–389CrossRefGoogle Scholar
  421. Zhao LJ, Hu QR, Huang YX, Keller AA (2017a) Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu(OH)2 nanopesticide. ACS Sustain Chem Eng 5(9):8294–8301CrossRefGoogle Scholar
  422. Zhao J, Cao XS, Wang ZY, Dai YH, Xing BS (2017b) Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res 111:18–27PubMedCrossRefGoogle Scholar
  423. Zhao Q, Ma CX, White JC, Dhankher OP, Zhang XJ, Zhang SY, Xing BS (2017c) Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon 114:661–670CrossRefGoogle Scholar
  424. Zhu Y, Xu J, Lu T, Zhang M, Ke M, Fu Z, Pan X, Qian H (2017) A comparison of the effects of copper nanoparticles and copper sulfate on Phaeodactylum tricornutum physiology and transcription. Environ Toxicol Pharmacol 56:43–49PubMedCrossRefGoogle Scholar
  425. Zou XY, Li PH, Huang Q, Zhang HW (2016) The different response mechanisms of Wolffia globosa: light-induced silver nanoparticle toxicity. Aquat Toxicol 176:97–105PubMedCrossRefGoogle Scholar
  426. Zou XY, Li PH, Lou J, Zhang HW (2017) Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa. Aquat Toxicol 189:150–158PubMedCrossRefGoogle Scholar
  427. Zouzelka R, Cihakova P, Ambrozova JR, Rathousky J (2016) Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.). Environ Sci Pollut Res 23(9):8317–8326CrossRefGoogle Scholar
  428. Zuo ZY, Sun LY, Wang TY, Miao P, Zhu XC, Liu SQ, Song FB, Mao HP, Li XN (2017) Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules 22(10):1727PubMedCentralCrossRefPubMedGoogle Scholar
  429. Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan WJ, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Proc Imp 17(10):1783–1793CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Josef Jampílek
    • 1
    • 2
  • Katarína Kráľová
    • 3
  1. 1.Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and MaterialsPalacký UniversityOlomoucCzech Republic
  2. 2.Institute of Neuroimmunology, Slovak Academy of SciencesBratislavaSlovakia
  3. 3.Institute of Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations