Advertisement

Almond (Prunus dulcis) oil

  • Slavica Čolić
  • Gordan Zec
  • Maja Natić
  • Milica Fotirić-Akšić
Chapter

Abstract

The almond tree, Prunus dulcis, is a species that belongs to the Amygdalus subgenus inside the Prunus genus, the Rosaceae family and the order Rosales. The almond kernel has been used as food for the mankind, due to its oil-rich and high-calorie content. As consumers are more interested in healthy life styles, almonds are emerging as some of the most popular edible nuts. Almonds are a nutrient-dense food, an excellent source of vitamin E, and a good source of manganese, magnesium, copper, phosphorus, fiber and riboflavin. Recent studies have shown that almonds also contain a diverse array of phenolic and polyphenolic compounds. Almond kernel is known as a source of high lipids (44–61% on fresh weight; 20–68% on dry weight). Only 8% of the fatty acids in almond oil are saturated fats, while it is high in monounsaturated fats, which have demonstrated beneficial effects on lipoprotein profiles in the blood and ability lower the risk of cardiovascular diseases. The major fatty acid is oleic acid, representing 50–70% of the total fatty acid content. Other minor components in almond oil include sterols, tocopherols (mainly α-tocopherol) and squalene. The almond oil is used as edible oil, mainly as a salad dressing and in vegetable dips. It is also used in the cosmetic industry, especially in dry skin creams, anti-wrinkle and anti-aging products. Historically, almond oil has been used for its numerous health and beauty benefits in ancient Chinese, Ayurvedic and Greco-Persian schools of medicine. The bitter almond oil contains three basic components, benzaldehyde, amygdalin and hydrogen cyanide that limit its uses to external applications. The sweet almond oil contains large amounts of vitamins E and K that help skin regeneration and maintain elasticity, which is why the oil is used in many cosmetic products. Almond oil is one of the most popular essential oils used in aromatherapy and massage therapy since it is suitable for any skin type.

Keywords

Composition Oils Prunus amygdalus Properties Usability 

Abbreviation

BAO

Bitter almond oil

CAGR

Compound annual growth rate

DW

Dry weight

FA

Fatty acids

FW

Fresh weight

GAE

Gallic acid equivalents (mg gallic acid/100 g of FW)

LDL

Low-density lipoprotein

MUFAs

Monounsaturated fatty acids

PA

Phosphatidic acids

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PI

Phosphatidylinositol

PL

Phospholipids

PUFAs

Polyunsaturated fatty acids

SAO

Sweet almond oil

TG

Triglycerides

References

  1. Abaspour, M., Imani, A., & Hassanlo, T. (2012). Effects of almond genotype and growing location on oil percentage and fatty acid composition of its seeds. Journal of Nuts, 3(3), 5–12.Google Scholar
  2. Abbey, M., Noakes, M., Belling, G. B., & Nestel, P. J. (1994). Partial replacement of saturated fatty acids with almonds or walnuts lowers total plasma cholesterol and low-density-lipoprotein cholesterol. The American Journal of Clinical Nutrition, 59(5), 995–999.  https://doi.org/10.1093/ajcn/59.5.995.CrossRefPubMedGoogle Scholar
  3. Abdallah, A., Ahumada, M. H., & Gradziel, T. M. (1998). Oil content and fatty acid composition of almond kernels from different genotypes and California production regions. The Journal of the American Society for Horticultural Science, 123(6), 1029–1033.CrossRefGoogle Scholar
  4. Abu-Hamdeh, N. H., & Alnefaie, K. A. (2015). A comparative study of almond and palm oils as two bio-diesel fuels for diesel engine in terms of emissions and performance. Fuel, 150, 318–324.  https://doi.org/10.1016/j.fuel.2015.02.040.CrossRefGoogle Scholar
  5. Ahmad, Z. (2010). The uses and properties of almond oil. Complementary Therapies in Clinical Practice, 16(1), 10–12.  https://doi.org/10.1016/j.ctcp.2009.06.015.CrossRefPubMedGoogle Scholar
  6. Ahrens, S., Venkatachalam, M., Mistry, A. M., Lapsley, K., & Sathe, S. K. (2005). Almond (Prunus dulcis L.) protein quality. Plant Foods for Human Nutrition, 60(3), 123–128.  https://doi.org/10.1007/s11130-005-6840-2.CrossRefPubMedGoogle Scholar
  7. Alasalvar, C., & Bolling, B. W. (2015). Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. The British Journal of Nutrition, 113(S2), S68–S78.  https://doi.org/10.1017/S0007114514003729.CrossRefPubMedGoogle Scholar
  8. Alasalvar, C., & Shahidi, F. (2009a). Natural antioxidants in tree nuts. European Journal of Lipid Science and Technology, 111(11), 1056–1062.  https://doi.org/10.1002/ejlt.200900098.CrossRefGoogle Scholar
  9. Alasalvar, C., & Shahidi, F. (2009b). Tree nuts: Composition, phytochemicals, and health effects. Boca Raton: CRC Press Taylor & Francis Group.Google Scholar
  10. Albala, K. (2009). Almonds along the silk road: The exchange and adaptation of ideas from West to East. Petits Propos Culinaires, 88, 17–32. http://works.bepress.com/ken-albala/9/.Google Scholar
  11. Alizadeh-Salte, S., Farhadi, N., Arzani, K., & Khoshghalb, H. (2018). Almond oil quality as related to the type of pollen source in Iranian self incompatible cultivars. International Journal of Fruit Science, 18, 29–36.  https://doi.org/10.1080/15538362.2017.1367983.CrossRefGoogle Scholar
  12. Al-Tikrity, E. T. B., & Ibraheem, A. F. A. F. K. K. (2017). Biodiesel production from bitter almond oil as new non-edible oil feedstock. Energy Sources, Part A Recovery Utilization and Environmental Effects, 39(7), 1–8.  https://doi.org/10.1080/15567036.2016.1243172.CrossRefGoogle Scholar
  13. Álvarez-Ortí, M., Quintanilla, C., Sena, E., Alvarruiz, A., & Pardo, J. E. (2012). The effects of a pressure extraction system on the quality parameters of different virgin pistachio (Pistacia vera L. var. Larnaka) oils. Grasas y Aceites, 63(3), 260–266.  https://doi.org/10.3989/gya.117511.CrossRefGoogle Scholar
  14. Amarasinghe, B. M. W. P. K., Kumarasiri, M. P. M., & Gangodavilage, N. C. (2009). Effect of method of stabilization on aqueous extraction of rice bran oil. Food and Bioproducts Processing, 87(2), 108–114.  https://doi.org/10.1016/j.fbp.2008.08.002.CrossRefGoogle Scholar
  15. Amarowicz, R., Troszynska, A., & Shahidi, F. (2005). Antioxidant activity of almond seed extract and its fractions. Journal of Food Lipids, 12(4), 344–358.  https://doi.org/10.1111/j.1745-4522.2005.00029.x.CrossRefGoogle Scholar
  16. Amorello, D., Orecchio, S., Pace, A., & Barreca, S. (2015). Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling. Natural Product Research, 30(18), 1–4.  https://doi.org/10.1080/14786419.2015.1107559.CrossRefGoogle Scholar
  17. Arranz, S., Cert, R., Pérez-Jiménez, J., Cert, A., & Saura-Calixto, F. (2008). Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chemistry, 110(4), 985–990.  https://doi.org/10.1016/j.foodchem.2008.03.021.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Askin, M. A., Balta, M. F., Tekintas, F. E., Kazankaya, A., & Balta, F. (2007). Fatty acid composition affected by kernel weight in almond [Prunus dulcis (Mill.) D.A. Webb.] genetic resources. Journal of Food Composition and Analysis, 20(1), 7–12.  https://doi.org/10.1016/j.jfca.2006.06.005.CrossRefGoogle Scholar
  19. Atapour, M., & Kariminia, H. R. (2011). Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Applied Energy, 88(7), 2377–2381.  https://doi.org/10.1016/j.apenergy.2011.01.014.CrossRefGoogle Scholar
  20. Ayadi, M., Ghrab, M., Gargouri, K., Elloumi, O., Zribi, F., Ben Mimoun, M., Boulares, C., & Guedri, W. (2006). Kernel characteristics of almond cultivars under rainfed conditions. Acta Horticulturae, 726, 377–381. https://www.actahort.org/books/726/726_61.htm.CrossRefGoogle Scholar
  21. Aziz, H. M., Ahmed, R. M., Muhammed, B. J. (2013). Characterization of bioactive compounds by HPLC from sweet and bitter almond fruits. Kurd Acad J (KAJ) – A- , Special Issue: 1st international conference of agricultural sciences held by Faculty of Agricultural Sciences, University of Sulaimani, and Kurdistan Academics Association, 20–21 Nov 2013, pp. 151–157.Google Scholar
  22. Balta, F., Battal, P., Balta, M. F., & Yoruk, H. I. (2009). Free sugar compositions based on kernel taste in almond genotypes Prunis dulcis from eastern Turkey. Chemistry of Natural Compounds, 45(2), 221–224.  https://doi.org/10.1007/s10600-009-9296-z.CrossRefGoogle Scholar
  23. Balvardi, M., Rezaei, K., Mendiola, J. A., & Ibanez, E. (2015). Optimization of the aqueous enzymatic extraction of oil from Iranian wild almond. Journal of the American Oil Chemists’ Society, 92(7), 985–992.  https://doi.org/10.1007/s11746-015-2671-y.CrossRefGoogle Scholar
  24. Barbera, G., La Mantia, T., Monastra, F., De Palma, L., & Schirra, M. (1994). Response of Ferragnes and Tuono almond cultivars to different environmental conditions in southern Italy. Acta Horticulturae, 373, 125–128. https://www.actahort.org/books/373/373_16.htm.CrossRefGoogle Scholar
  25. Barreira, J. C. M., Casal, S., Ferreira, I. C. F. R., Peres, A. M., Pereira, J. A., & Oliveira, M. B. P. P. (2012). Supervised chemical pattern recognition in almond (Prunus dulcis) Portuguese PDO cultivars: PCA – and LDA-based triennial study. The Journal of Agricultural and Food Chemistry, 60(38), 9697–9704.  https://doi.org/10.1021/jf301402t.CrossRefPubMedGoogle Scholar
  26. Beltran Sanahuja, A., Prats Moya, M. S., Maestre Perez, S. E., GraneTeruel, N., & Martin Carratala, M. L. (2009). Classification of four almond cultivars using oil degradation parameters based on FTIR and GC data. The Journal of the American Oil Chemists’ Society, 86(1), 51–58.  https://doi.org/10.1007/s11746-008-1323-x.CrossRefGoogle Scholar
  27. Beltran Sanahuja, A. B., Santonja, M. R., Grané Teruel, N., Carratala, M. L. M., & Garrigos Selva, M. C. (2011). Classification of almond cultivars using oil volatile compound determination by HS-SPME–GC–MS. Journal of the American Oil Chemists’ Society, 88(3), 329–336.  https://doi.org/10.1007/s11746-010-1685-8.CrossRefGoogle Scholar
  28. Beyhan, Ö., Aktas, M., Yilmaz, N., Simsek, N., & Gerçekçioğlu, R. (2011). Determination of fatty acid compositions of some important almond (Prunus amygdalus L.) varieties selected from Tokat province and Eagean region of Turkey. The Journal of Medicinal Plants Research, 5(19), 4907–4911. http://www.academicjournals.org/journal/JMPR/article-full-text-pdf/C90FEF626367.Google Scholar
  29. Bolling, B. W. (2017). Almond polyphenols: Methods of analysis, contribution to food quality, and health promotion. Comprehensive Reviews in Food Science and Food Safety, 16, 346–368.  https://doi.org/10.1111/1541-4337.12260.CrossRefGoogle Scholar
  30. Bolling, B. W., Dolnikowski, G., & Blumberg, J. B. (2009). Quantification of almond skin polyphenols by liquid chromatography-mass spectrometry. Journal of Food Science, 74(4), C326–C332.  https://doi.org/10.1111/j.1750-3841.2009.01133.x.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Boukhchina, S., Sebai, K., Cherif, A., Kallel, H., & Mayer, P. M. (2004). Identification of glycerophospholipids in rapeseed, olive, almond, and sunflower oils by LC–MS and LC–MS–MS. Canadian Journal of Chemistry, 82(7), 1210–1215.  https://doi.org/10.1139/v04-094.CrossRefGoogle Scholar
  32. Bruüening, P., Haase, I., Matissek, R., & Fischer, M. (2011). Marzipan: Polymerase chain reaction-driven methods for authenticity control. Journal of Agricultural and Food Chemistry, 59(22), 11910–11917.  https://doi.org/10.1021/jf202484a.CrossRefGoogle Scholar
  33. Caja, M. M., del Castillo, M. R., Alvarez, R. M., Herraiz, M., & Blanch, G. P. (2000). Analysis of volatile compounds in edible oils using simultaneous distillation-solvent extraction and direct coupling of liquid chromatography with gas chromatography. European Food Research and Technology, 211(1), 45–51.  https://doi.org/10.1007/s002170050587.CrossRefGoogle Scholar
  34. Cantor, D., Fleischer, J., Green, J., & Israel, D. L. (2006). The fruit of the matter. Mental Floss, 5(4), 12.Google Scholar
  35. Çelik, F., & Balta, M. F. (2011). Kernel fatty acid composition of Turkish almond (Prunus dulcis) genotypes: A regional comparison. Journal of Food, Agriculture and Environment, 9(1), 171–174.Google Scholar
  36. Chang, S. Y. (2008). Effects of aroma hand massage on pain, state anxiety and depression in hospice patients with terminal cancer. Journal of Korean Academy of Nursing, 38(4), 493–502.  https://doi.org/10.4040/jkan.2008.38.4.493.CrossRefPubMedGoogle Scholar
  37. Chen, C. Y., Milbury, P. E., Lapsley, K., & Blumberg, J. B. (2005). Flavonoids from almond skins are bioavailable and act synergistically with vitamins C and E to enhance hamster and human LDL resistance to oxidation. The Journal of Nutrition, 135(6), 1366–1373.  https://doi.org/10.1093/jn/135.6.1366.CrossRefPubMedGoogle Scholar
  38. Chen, C. Y., Lapsley, K., & Blumberg, J. (2006). A nutrition and health perspective on almonds. Journal of the Science of Food and Agriculture, 86(14), 2245–2250.  https://doi.org/10.1002/jsfa.2659.CrossRefGoogle Scholar
  39. Cherif, A., Khaled, S., Boukhchina, S., Belkacemi, K., & Arul, J. (2004). Kernel fatty acid and triacylglycerol composition for three almond cultivars during maturation. The Journal of the American Oil Chemists’ Society, 81(10), 901–905.  https://doi.org/10.1007/s11746-004-0999-z.CrossRefGoogle Scholar
  40. Čolić, S., Milatović, D., Nikolić, D., & Zec, G. (2010). Isoenzyme polymorphism of almond genotypes selected in the region of northern Serbia. Horticultural Science (Prague), 37(2), 56–61. https://www.agriculturejournals.cz/publicFiles/19956.pdf.CrossRefGoogle Scholar
  41. Čolić, S., Rakonjac, V., Zec, G., Nikolić, D., & Akšić Fotirić, M. (2012). Morphological and biochemical evaluation of selected almond [Prunus dulcis (Mill.) D.A.Webb] genotypes in northern Serbia. Turkish Journal of Agriculture and Forestry, 36(4), 429–438. http://journals.tubitak.gov.tr/agriculture/issues/tar-12-36-4/tar-36-4-5-1103-50.pdf.Google Scholar
  42. Čolić, S., Rahović, D., Bakić, I., Zec, G., & Janković, Z. (2013). Kernel characteristics of the almond genotypes selected in Northern Serbia. Acta Horticulturae, 981, 123–126. https://www.actahort.org/books/981/981_14.htm.CrossRefGoogle Scholar
  43. Čolić, S., Fotirić Akšić, M., Lazarević, K., Zec, G., Gašić, U., Dabić Zagorac, D., & Natić, M. (2017). Fatty acid and phenolic profile of almond grown in Serbia. Food Chemistry, 234, 455–463.  https://doi.org/10.1016/j.foodchem.2017.05.006.CrossRefPubMedGoogle Scholar
  44. Čolić, S., Zec, G., Bakić, I., Janković, Z., Rahović, D., Fotirić Akšić, M. (2018). Rootstock effect on some quality characteristics of almond cultivars Troito, Marcona and Texas. Acta Horticulturae, 1219, 19–24. https://doi.org/10.17660/ActaHortic.2018.1219.4Google Scholar
  45. Cordeiro, V., & Monteiro, A. (2001). Almond growing in Trás-os-Montes region (Portugal). Acta Horticulturae, 591, 161–165. https://www.actahort.org/books/591/591_22.htm.Google Scholar
  46. Culp, R. A., & Noakes, J. E. (1992). Determination of synthetic components in flavors by deuterium/hydrogen isotopic ratios. Journal of Agricultural and Food Chemistry, 40(10), 1892–1897.  https://doi.org/10.1021/jf00022a033.CrossRefGoogle Scholar
  47. Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V., & Georgiou, C. A. (2016). Food authentication: Techniques, trends & emerging approaches. TrAC, 85(Part A), 123–132.  https://doi.org/10.1016/j.trac.2016.02.026.CrossRefGoogle Scholar
  48. Davis, P. A., & Iwahashi, C. K. (2001). Whole almonds and almond fractions reduce aberrant crypt foci in a rat model of colon carcinogenesis. Cancer Letters, 165(1), 27–33.  https://doi.org/10.1016/S0304-3835(01)00425-6.CrossRefPubMedGoogle Scholar
  49. Dodevska, M., Šobajić, S., & Djordjević, B. (2015). Fibre and polyphenols of selected fruits, nuts and green leafy vegetables used in Serbian diet. Journal of the Serbian Chemical Society, 80(1), 21–33. http://www.doiserbia.nb.rs/img/doi/0352-5139/2015/0352-51391400062D.pdf.CrossRefGoogle Scholar
  50. Drogoudi, P. D., Pantelidis, G., Bacchetta, L., De Giorgio, D., Duval, H., Metzidakis, I., & Spera, D. (2013). Protein and mineral nutrient contents in kernels from 72 sweet almond cultivars and accessions grown in France, Greece and Italy. International Journal of Food Sciences and Nutrition, 64(2), 202–209.  https://doi.org/10.3109/09637486.2012.728202.CrossRefPubMedGoogle Scholar
  51. Dulf, F. V., Unguresan, M. L., Vodnar, D. C., & Socaciu, C. (2010). Free and esterified sterol distribution in four Romanian vegetable oils. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(2), 91–97. http://www.notulaebotanicae.ro/index.php/nbha/article/viewFile/4753/4517.Google Scholar
  52. Egea, G., González-Real, M. M., Baille, A., Nortes, P. A., Sánchez-Bel, P., & Domingo, R. (2009). The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees. Agricultural Water Management, 96(11), 1605–1614.  https://doi.org/10.1016/j.agwat.2009.06.017.CrossRefGoogle Scholar
  53. Esteki, M., Farajmand, B., Kolahderazi, Y., & Gandara, J. S. (2017). Chromatographic fingerprinting with multivariate data analysis for detection and quantification of apricot kernel in almond powder. Food Analytical Methods, 10(10), 3312–3320.  https://doi.org/10.1007/s12161-017-0903-5.CrossRefGoogle Scholar
  54. FAOSTAT. (2018). FAO Statistical data base. http://www.fao.org/faostat/en/#data/QC. Accessed 5 May 2018.
  55. Femenia, A., Garcia, M., Simal, S., Rossello, C., & Blasco, M. (2001). Effects of supercritical carbon dioxide (SC-CO2) oil extraction on the cell wall composition of almond fruits. Journal of Agricultural and Food Chemistry, 49(12), 5828–5834.  https://doi.org/10.1021/jf010532e.CrossRefPubMedGoogle Scholar
  56. Fernandes, G. D., Gómez-Coca, R. B., Pérez-Camino, M. C., Moreda, W., & Barrera-Arellano, D. (2017). Chemical characterization of major and minor compounds of nut oils: Almond, hazelnut, and pecan nut. Journal of Chemistry. Article ID 2609549, 11 pages.  https://doi.org/10.1155/2017/2609549.CrossRefGoogle Scholar
  57. Fernández-Cuesta, A., Kodad, O., Socias I Company, R., & Velasco, L. (2012). Phytosterol variability in almond germplasm. Journal of the American Society for Horticultural Science, 137(5), 343–348. http://journal.ashspublications.org/content/137/5/343.full.pdf+html.CrossRefGoogle Scholar
  58. Fraser, G. E. (1999). Nut consumption, lipids, and risk of a coronary event. Clinical Cardiology, 22(S3), 11–15.  https://doi.org/10.1002/clc.4960221504.CrossRefGoogle Scholar
  59. Frison-Norrie, S., & Sporns, P. (2002). Identification and quantification of flavonol glycosides in almond seedcoats using MALDI-TOF MS. Journal of Agricultural and Food Chemistry, 50(10), 2782–2787.  https://doi.org/10.1021/jf0115894.CrossRefPubMedGoogle Scholar
  60. García-López, C., Grané-Teruel, N., Berenguer-Navarro, V., García-García, J. E., & Martín-Carratalá, M. L. (1996). Major fatty acid composition of 19 almond cultivars of different origins. A chemometric approach. Journal of Agricultural and Food Chemistry, 44(7), 1751–1756.  https://doi.org/10.1021/jf950505m.CrossRefGoogle Scholar
  61. García-Pascual, P., Mateos, M., Carbonell, V., & Salazar, D. M. (2003). Influence of storage conditions on the quality of shelled and roasted almonds. Biosystems Engineering, 84(2), 201–209.  https://doi.org/10.1016/S1537-5110(02)00262-3.CrossRefGoogle Scholar
  62. Gradziel, T. M. (2011). Origin and dissemination of almond. Horticultural Reviews, 38, 23–82.  https://doi.org/10.1002/9780470872376.ch2.CrossRefGoogle Scholar
  63. Guillén, M. D., Goicoechea, E., Palencia, G., & Cosmes, N. (2008). Evidence of the formation of light polycyclic aromatic hydrocarbons during the oxidation of edible oils in closed containers at room temperature. Journal of Agricultural and Food Chemistry, 56(6), 2028–2033.  https://doi.org/10.1021/jf072974h.CrossRefPubMedGoogle Scholar
  64. Gutfinger, T., & Letan, A. (1973). Detection of adulteration of almond oil with apricot oil through determination of tocopherols. Journal of Agricultural and Food Chemistry, 21(6), 1120–1123.  https://doi.org/10.1021/jf60190a039.CrossRefGoogle Scholar
  65. Haase, I., Brüning, P., Matissek, R., & Fischer, M. (2013). Real-time PCR assays for the quantitation of rDNA from apricot and other plant species in marzipan. Journal of Agricultural and Food Chemistry, 61(14), 3414–3418.  https://doi.org/10.1021/jf3052175.CrossRefPubMedGoogle Scholar
  66. Hajhashemi, M., Rafieian, M., Rouhi Boroujeni, H. A., Miraj, S., Memarian, S., Keivani, A., & Haghollahi, F. (2017). The effect of Aloe vera gel and sweet almond oil on striae gravidarum in nulliparous women. The Journal of Maternal-Fetal & Neonatal Medicine, 31(13), 1703–1708.  https://doi.org/10.1080/14767058.2017.1325865.CrossRefGoogle Scholar
  67. Hall, A. P., Moore, J. G., Gunning, B., & Cook, B. B. (1958). The nutritive value of fresh and roasted, California-grown Nonpareil almonds. Journal of Agricultural and Food Chemistry, 6(5), 377–382.  https://doi.org/10.1021/jf60087a008.CrossRefGoogle Scholar
  68. Hanmoungjui, P., Pyle, D. L., & Niranjan, K. (2000). Extraction of rice bran oil using aqueous media. Journal of Chemical Technology and Biotechnology, 75(5), 348–352.  https://doi.org/10.1002/(SICI)1097-4660(200005)75:5<348::AID-JCTB233>3.0.CO;2-P.CrossRefGoogle Scholar
  69. Harris, L. J. (2013). Improving the safety and quality of nuts. Cambridge, UK: Woodhead Publishing Limited.CrossRefGoogle Scholar
  70. Holcapek, M., Lisa, M., Jandera, P., & Kabátová, N. (2005). Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. Journal of Separation Science, 28(12), 1315–1333.  https://doi.org/10.1002/jssc.200500088.CrossRefPubMedGoogle Scholar
  71. Hou, L. X., Shang, X. L., Wang, X., & Liu, J. (2013). Application of enzyme in aqueous extraction of sesame oil. European Food Research and Technology, 236(6), 1027–1030.  https://doi.org/10.1007/s00217-013-1955-4.CrossRefGoogle Scholar
  72. Houmy, N., Mansouri, F., Benmoumen, A., Elmouden, S., Boujnah, M., Sindic, M., Fauconnier, M. L., Serghini-Caid, H., & Elamrani, A. (2016). Characterization of almond kernel oils of five almonds varieties cultivated in Eastern Morocco. Options Méditerranéennes: Série A. Séminaires Méditerranéens, 119, 317–321. http://om.ciheam.org/om/pdf/a119/00007414.pdf.Google Scholar
  73. Hyson, D. A., Schneeman, B. O., & Davis, P. A. (2002). Almonds and almond oil have similar effects on plasma lipids and ldl oxidation in healthy men and women. The Journal of Nutrition, 132(4), 703–707.  https://doi.org/10.1093/jn/132.4.703.CrossRefPubMedGoogle Scholar
  74. Imani, A., Hadadi, A., Amini, S. H., Vaeizi, M., & Jolfaei, B. (2012). The effect of genotype and year on the average percentage of oil seed content of almond. International Journal of Nuts and Related Sciences, 3(1), 37–40. http://ijnrs.damghaniau.ac.ir/article_515729_47cd7997e366922671f6e383700b73ee.pdf.Google Scholar
  75. International Nut and Dried Fruit Council. (2018). https://www.nutfruit.org/what-we-do/publications/technical-resources.
  76. Jones, W. H. S. (1967). Hippocrates (Vol. IV). Cambridge, MA: Harvard University Press.Google Scholar
  77. Kamal-Eldin, A., & Moreau, R. A. (2009). Tree nut oils. In R. A. Moreau & A. K. E. Urbana (Eds.), Gourmet and health-promoting specialty oils (pp. 126–149). Urbana: AOCS Press.Google Scholar
  78. Karaman, S., Karasu, S., Tornuk, F., Toker, O., Geçgel, U., & Sagdic, O. (2015). Recovery potential of cold press byproducts obtained from the edible oil industry: Physicochemical, bioactive, and antimicrobial properties. Journal of Agricultural and Food Chemistry, 63(8), 2305–2313.  https://doi.org/10.1021/jf504390t.CrossRefPubMedGoogle Scholar
  79. Karatay, H., Şahin, A., Yılmaz, Ö., & Aslan, A. (2014). Major fatty acids composition of 32 almond (Prunus dulcis (Mill.) D.A. Webb) genotypes distributed in east and southeast of Anatolia. Turkish Journal of Biochemistry, 39(3), 307–316. http://www.turkjbiochem.com/2014/307-316.pdf.CrossRefGoogle Scholar
  80. Kaska, N., Kafkas, S., Padulosi, S., Wassimi, N., & Ak, B. E. (2006). Characterization of nut species of Afghanistan: I–Almond. Acta Horticulturae, 726, 147–155. https://www.actahort.org/books/726/726_23.htm.CrossRefGoogle Scholar
  81. Kazantzis, I., Nanos, G. D., & Stavroulakis, G. G. (2003). Effect of harvest time and storage conditions on almond kernel oil and sugar composition. Journal of Science and Food Agriculture, 83(4), 354–359.  https://doi.org/10.1002/jsfa.1312.CrossRefGoogle Scholar
  82. Kester, D. E., Cunningham, S., & Kader, A. A. (1993). Almonds. In R. Macrae, R. K. Robinson, & M. J. Sadler (Eds.), Encyclopedia of food science, food technology and nutrition (pp. 121–126). London: Academic.Google Scholar
  83. Kiani, S., Rajabpoor, S., Sorkheh, K., & Ercisli, S. (2015). Evaluation of seed quality and oil parameters in native Iranian almond (Prunus L. spp.) species. Journal of Forest Research, 26(1), 115–122.  https://doi.org/10.1007/s11676-014-0009-5.CrossRefGoogle Scholar
  84. Kirbaşlar, F. G., Türker, G., Özsoy-Güneş, Z., Ünal, M., Dülger, B., Ertaş, E., & Kizilkaya, B. (2012). Evaluation of fatty acid composition, antioxidant and antimicrobial activity, mineral composition and calorie values of some nuts and seeds from Turkey. Records of Natural Products, 6(4), 339–349. http://www.acgpubs.org/RNP/2012/Volume%206/Issue%201/48-RNP-1103-529.pdf.Google Scholar
  85. Kodad, O. (2017). Chemical composition of almond nuts. In R. Socias I Company & T. Gradziel (Eds.), Almonds: Botany, production and uses (pp. 428–448). Wallingford: CABI.CrossRefGoogle Scholar
  86. Kodad, O., & Socias i Company, R. (2008). Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationship with kernel quality. Journal of Agricultural and Food Chemistry, 56(11), 4096–4101.  https://doi.org/10.1021/jf8001679.CrossRefPubMedGoogle Scholar
  87. Kodad, O., Socias I Company, R., Prats, M. S., & Lopez Ortiz, M. C. (2006). Variability in tocopherol concentrations in almond oil and its use as a selection criterion in almond breeding. The Journal of Horticultural Science and Biotechnology, 81(3), 501–507.  https://doi.org/10.1080/14620316.2006.11512094.CrossRefGoogle Scholar
  88. Kodad, O., Estopanan, G., Juan, T., Mamouni, A., & Socias i Company, R. (2011a). Tocopherol concentration in almond oil: Genetic variation and environmental effects under warm conditions. Journal of Agricultural and Food Chemistry, 59(11), 6137–6141.  https://doi.org/10.1021/jf200323c.CrossRefPubMedGoogle Scholar
  89. Kodad, O., Alonso, J. M., Espiau, M. T., Estopanan, G., Juan, T., & Socias I Company, R. (2011b). Chemometric characterization of almond germplasm: Compositional aspects involved in quality and breeding. Journal of the American Society for Horticultural Science, 136(4), 273–281. http://journal.ashspublications.org/content/136/4/273.full.pdf+html.CrossRefGoogle Scholar
  90. Kodad, O., Estopañán, G., Juan, T., & Socias I Company, R. (2013). Protein content and oil composition of almond from Moroccan seedlings: Genetic diversity, oil quality and geographical origin. Journal of the American Oil Chemists’ Society, 90(2), 243–252.  https://doi.org/10.1007/s11746-012-2166-z.CrossRefGoogle Scholar
  91. Kodad, O., Estopañán, G., Juan, T., & Socias i Company, R. (2014a). Tocopherol concentration in almond oil from Moroccan seedlings: Geographical origin and post-harvest implications. Journal of Food Composition and Analysis, 33(2), 161–165.  https://doi.org/10.1016/j.jfca.2013.12.010.CrossRefGoogle Scholar
  92. Kodad, O., Estopanán, G., Juan, T., Alonso, J. M., Espiau, M. T., & Socias i Company, R. (2014b). Oil content, fatty acid composition and tocopherol concentration in the Spanish almond genebank collection. Scientia Horticulturae, 177, 99–107.  https://doi.org/10.1016/j.scienta.2014.07.045.CrossRefGoogle Scholar
  93. Kodad, O., Fernández-Cuesta, A., Karima, B., Velasco, L., Ercișli, S., & Socias I Company, R. (2015). Natural variability in phytosterols in almond (Prunus amygdalus) trees growing under a southern Mediterranean climate. The Journal of Horticultural Science and Biotechnology, 90(5), 543–549.  https://doi.org/10.1080/14620316.2015.11668712.CrossRefGoogle Scholar
  94. Kodad, O., Socias i Company, R., & Alonso, J. M. (2018). Genotypic and environmental effects on tocopherol content in almond. Antioxidants, 7(1), 6.  https://doi.org/10.3390/antiox7010006.CrossRefPubMedCentralGoogle Scholar
  95. Korekar, G., Stobdan, T., & Arora, R. (2011). Antioxidant capacity and phenolics content of apricot (Prunus armeniaca L.) kernel as a function of genotype. Plant Food for Human Nutrition, 66(4), 376–383.  https://doi.org/10.1007/s11130-011-0246-0.CrossRefGoogle Scholar
  96. Koriyama, H., Watanabe, S., Nakaya, T., Shigemori, I., Kita, M., Yoshida, N., Masaki, D., Tadai, T., Ozasa, K., Fukui, K., & Imanishi, J. (2005). Immunological and psychological benefits of aromatherapy massage. Evidence-Based Complementary and Alternative Medicine, 2(2), 179–184.  https://doi.org/10.1093/ecam/neh087.CrossRefGoogle Scholar
  97. Kornsteiner, M., Wagner, K. H., & Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food Chemistry, 98(2), 381–387.  https://doi.org/10.1016/j.foodchem.2005.07.033.CrossRefGoogle Scholar
  98. Lee, J., Zhang, G., Wood, E., Castillo, C. R., & Mitchell, A. E. (2013). Quantification of amygdalin in nonbitter, semibitter, and bitter almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS. Journal of Agricultural and Food Chemistry, 61(32), 7754–7759.  https://doi.org/10.1021/jf402295u.CrossRefPubMedGoogle Scholar
  99. Lenhard, B. H. (1990). Phenol almond oil for sclerosing of hemorrhoids. Hautarzt, 41(12), 699. [in German].PubMedGoogle Scholar
  100. Leo, L., Rescio, L., Ciurlia, L., & Zacheo, G. (2005). Supercritical carbon dioxide extraction of oil and α -tocopherol from almond seeds. Journal of the Science of Food and Agriculture, 85(13), 2167–2174.  https://doi.org/10.1002/jsfa.2244.CrossRefGoogle Scholar
  101. Li, S. C., Liu, Y. H., Liu, J. F., Chang, W. H., Chen, C. M., & Chen, C. Y. (2011). Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism, Clinical and Experimental, 60(4), 474–479.  https://doi.org/10.1016/j.metabol.2010.04.009.CrossRefGoogle Scholar
  102. Li, Y., Zhang, Y., Sui, X., Zhang, Y., Feng, H., & Jiang, L. (2013). Ultrasound-assisted aqueous enzymatic extraction of oil from perilla (Perilla frutescens L.) seeds. CyTA – Journal of Food, 12(1), 16–21.  https://doi.org/10.1080/19476337.2013.782070.CrossRefGoogle Scholar
  103. Li, S., Geng, F., Wang, P., Lu, J., & Ma, M. (2016). Proteome analysis of the almond kernel (Prunus dulcis). Journal of the Science of Food and Agriculture, 96(10), 3351–3357.  https://doi.org/10.1002/jsfa.7514.CrossRefPubMedGoogle Scholar
  104. Liu, L., Yu, X., Zhao, Z., Xua, L., & Zhanga, R. (2017). Efficient salt-aided aqueous extraction of bitter almond oil. Journal of the Science of Food and Agriculture, 97(11), 3814–3821.  https://doi.org/10.1002/jsfa.8245.CrossRefPubMedGoogle Scholar
  105. López-Ortiz, C. M., Prats-Moya, S., Beltrán Sanahuja, A., Maestre-Pérez, S. E., Grané - Teruel, N., & Martín-Carratalá, M. L. (2008). Comparative study of tocopherol homologue content in four almond oil cultivars during two consecutive years. Journal of Food Composition and Analysis, 21(2), 144–151.  https://doi.org/10.1016/j.jfca.2007.09.004.CrossRefGoogle Scholar
  106. Madawala, S. R. P., Kochhar, S. P., & Dutta, P. C. (2012). Lipid components and oxidative status of selected specialty oils. Grasas y Aceites, 63(2), 143–151.  https://doi.org/10.3989/gya.083811.CrossRefGoogle Scholar
  107. Maestri, D., Martínez, M., Bodoira, R., Rossi, Y., Oviedo, A., Pierantozzi, P., & Torres, M. (2015). Variability in almond oil chemical traits from traditional cultivars and native genetic resources from Argentina. Food Chemistry, 170, 55–61.  https://doi.org/10.1016/j.foodchem.2014.08.073.CrossRefPubMedGoogle Scholar
  108. Maguire, L. S., O’Sullivan, S. M., Galvin, K., O’Connor, T. P., & O’Brien, N. M. (2004). Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. International Journal of Food Sciences and Nutrition, 55(3), 171–178.  https://doi.org/10.1080/09637480410001725175.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Malakouti, J., Khalili, A. F., & Kamrani, A. (2017). Sesame, sweet almond & sesame and sweet almond oil for the prevention of striae in primiparous females: A triple-blind randomized controlled trial. Iranian Red Crescent Medical Journal, 19(6), e33672.  https://doi.org/10.5812/ircmj.33672.CrossRefGoogle Scholar
  110. Malisiova, F., Hatziantoniou, S., Dimas, K., Kletstas, D., & Demetzos, C. (2004). Liposomal formulations from phospholipids of Greek almond oil. Properties and biological activity. Zeitschrift für Naturforschung. Section C, 59(5–6), 330–334.CrossRefGoogle Scholar
  111. Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747.  https://doi.org/10.1093/ajcn/79.5.727.CrossRefPubMedGoogle Scholar
  112. Mandalari, G., & Faulks, R. (2008). Release of protein, lipid, and vitamin E from almond seeds during digestion. Journal of Agricultural and Food Chemistry, 56(9), 3409–3416.  https://doi.org/10.1021/jf073393v.CrossRefPubMedGoogle Scholar
  113. Mandalari, G., Tomaino, A., Arcoraci, T., Martorana, M., LoTurco, V., Cacciola, F., Rich, G. T., Bisignano, C., Saija, A., Dugo, P., Cross, K. L., Parker, M. L., Waldron, K. W., & Wickham, M. S. J. (2010). Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). Journal of Food Composition and Analysis, 23(2), 166–174.  https://doi.org/10.1016/j.jfca.2009.08.015.CrossRefGoogle Scholar
  114. Martín-Carratalá, M. L., Llorens-Jordá, C., Berenguer-Navarro, V., & Grané-Teruel, N. (1999). Comparative study on the triglyceride composition of almond kernel oil. a new basis for cultivar chemometric characterization. Journal of Agricultural and Food Chemistry, 47(9), 3688–3692.  https://doi.org/10.1021/jf981220n.CrossRefPubMedGoogle Scholar
  115. Martínez, M. L., Mattea, M. A., & Maestri, D. M. (2008). Pressing and supercritical carbon dioxide extraction of walnut oil. Journal of Food Engineering, 88(3), 399–404.  https://doi.org/10.1016/j.jfoodeng.2008.02.026.CrossRefGoogle Scholar
  116. Martínez, M. L., Penci, M. C., Marin, M. A., Pablo, D., Ribotta, P. D., & Maestri, D. M. (2013). Screw press extraction of almond (Prunus dulcis (Miller) D.A. Webb): Oil recovery and oxidative stability. Journal of Food Engineering, 119(1), 40–45.  https://doi.org/10.1016/j.jfoodeng.2013.05.010.CrossRefGoogle Scholar
  117. Mateus Martins, I., Chen, Q., Chen, C. Y. O. (2017). Emerging functional foods derived from almonds. In: I. Ferreira, L. Barros, P. Morales (Eds.), Wild plants, mushrooms, and nuts: Functional food properties and applications (pp. 445–469). Wiley. Chichester, West Sussex, PO19 8SQ, United Kingdom.CrossRefGoogle Scholar
  118. Matos, A., & Acuña, J. (2010). Influencia del tiempo, tamaño de partícula y proporción sólido-líquido en la extracción de aceite crudo de la almendra de durazno (Prunus persica). Review Investigational Ciência e Tecnologia de Alimentos, 1, 1–6.Google Scholar
  119. Matthäus, B., & Özcan, M. M. (2009). Fatty acids and tocopherol contents of some Prunus spp. kernel oils. Journal of Food Lipids, 16(2), 187–199.  https://doi.org/10.1111/j.1745-4522.2009.01140.x.CrossRefGoogle Scholar
  120. Matthäus, B., Özcan, M. M., Juhaimi, F. A., Adiamo, O. Q., Alsawmahi, O. N., Ghafoor, K., & Babiker, E. E. (2018). Effect of the harvest time on oil yield, fatty acid, tocopherol and sterol contents of developing almond and walnut kernels. Journal of Oleo Science, 67(1), 39–45.  https://doi.org/10.5650/jos.ess17162.CrossRefPubMedGoogle Scholar
  121. Mehran, M., & Filsoof, M. (1974). Characteristics of Iranian almond nuts and oils. Journal of the American Oil Chemists’ Society, 51(10), 433–434.  https://doi.org/10.1007/BF02635147.CrossRefGoogle Scholar
  122. Mexis, S. F., Badeka, A. V., Chouliara, E., Riganakos, K. A., & Kontominas, M. G. (2009). Effect of γ-irradiation on the physicochemical and sensory properties of raw unpeeled almond kernels (Prunus dulcis). Innovative Food Science and Emerging Technologies, 10(1), 87–92.  https://doi.org/10.1016/j.ifset.2008.09.001.CrossRefGoogle Scholar
  123. Micke, W. C., & Kester, D. E. (1998). Almond growing in California. Acta Horticulturae, 470, 21–28.  https://doi.org/10.17660/ActaHortic.1998.470.1.CrossRefGoogle Scholar
  124. Milbury, P. E., Chen, C. Y., Dolnikowski, G. G., & Blumberg, J. B. (2006). Determination of flavonoids and phenolics and their distribution in almonds. Journal of Agricultural and Food Chemistry, 54(14), 5027–5033.  https://doi.org/10.1021/jf0603937.CrossRefPubMedGoogle Scholar
  125. Miraliakbari, H., & Shahidi, F. (2008a). Lipid class compositions, tocopherols and sterols of tree nut oils extracted with different solvents. Journal of Food Lipids, 15(1), 81–96.  https://doi.org/10.1111/j.1745-4522.2007.00104.x.CrossRefGoogle Scholar
  126. Miraliakbari, H., & Shahidi, F. (2008b). Antioxidant activity of minor components of tree nut oils. Food Chemistry, 111(2), 421–427.  https://doi.org/10.1016/j.foodchem.2008.04.008.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Monagas, M., Garrido, I., Lebrón-Aguilar, R., Bartolome, B., & Gómez-Cordovés, C. (2007). Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of bioactive polyphenols. Journal of Agricultural and Food Chemistry, 55(21), 8498–8507.  https://doi.org/10.1021/jf071780z.CrossRefPubMedGoogle Scholar
  128. Mori, A. M., Considine, R. V., & Mattes, R. D. (2011). Acute and second-meal effects of almond form in impaired glucose tolerant adults: A randomized crossover trial. Nutrition and Metabolism, 8(1), 6.  https://doi.org/10.1186/1743-7075-8-6.CrossRefPubMedGoogle Scholar
  129. Muhammad, S., Sanden, B. L., Lampinen, B. D., Saa, S., Siddiqui, M. I., & Smart, D. R. (2015). Seasonal changes in nutrient content and concentrations in a mature deciduous tree species: Studies in almond (Prunus dulcis (Mill.) DA Webb). European Journal of Agronomy, 65, 52–68.  https://doi.org/10.1016/j.eja.2015.01.004.CrossRefGoogle Scholar
  130. Nanos, G. D., Kazantzis, I., Kefalas, P., Petrakis, C., & Stavroulakis, G. G. (2002). Irrigation and harvest time affect almond kernel quality and composition. Scientia Horticulturae, 96(1–4), 249–256.  https://doi.org/10.1016/S0304-4238(02)00078-X.CrossRefGoogle Scholar
  131. Oliveira, I., Meyer, A., Afonso, S., Ribeiro, C., & Goncalves, B. (2018). Morphological, mechanical and antioxidant properties of Portuguese almond cultivars. Journal of Food Science and Technology, 55(2), 467–478.  https://doi.org/10.1007/s13197-017-2955-3.CrossRefPubMedGoogle Scholar
  132. Ostlund, R. E., Jr. (2002). Phytosterols in human nutrition. Annual Review of Nutrition, 22, 533–549.  https://doi.org/10.1146/annurev.nutr.22.020702.075220.CrossRefPubMedGoogle Scholar
  133. Özcan, M. M., Ünver, A., Erkan, E., & Arslan, D. (2011). Characteristics of some almond kernel and oils. Scientia Horticulturae, 127(3), 330–333.  https://doi.org/10.1016/j.scienta.2010.10.027.CrossRefGoogle Scholar
  134. Panadare, D. C., & Rathod, V. K. (2017). Three phase partitioning for extraction of oil: A review. Trends in Food Science and Technology, 68, 145–151.  https://doi.org/10.1016/j.tifs.2017.08.004.CrossRefGoogle Scholar
  135. Pasini, F., Riciputi, Y., Verardo, V., & Caboni, M. F. (2013). Phospholipids in cereals, nuts and some selected oilseeds. Recent Research Development Lipids, 9, 139–201. https://pdfs.semanticscholar.org/2fe3/a31213da45eeed3fc782f71b8c710c394610.pdf?_ga=2.129723084.1563405966.1527686296-2059612530.1527588704.Google Scholar
  136. Perez, A. G., Sanz, C., Olias, R., & Olias, J. M. (1999). Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. Journal of Agricultural and Food Chemistry, 47(1), 249–253.  https://doi.org/10.1021/jf9807519.CrossRefPubMedGoogle Scholar
  137. Pićurić-Jovanović, K., & Milovanović, M. (1993). Analysis of volatile compounds in almond and plum kernel oils. Journal of the American Oil Chemists’ Society, 70(11), 1101–1104.  https://doi.org/10.1007/BF02632149.CrossRefGoogle Scholar
  138. Piironen, V., Syväoja, E. L., Varo, P., Salminen, K., & Koivistoinen, P. (1986). Tocopherols and tocotrienols in Finnish foods: Vegetables, fruits, and berries. Journal of Agricultural and Food Chemistry, 34(4), 742–746.  https://doi.org/10.1021/jf00070a038.CrossRefGoogle Scholar
  139. Pineli, L. L. O., Carvalho, M. V., Aguiar, L. A., Oliveira, G. T., Celestino, S. M. C., Botelho, R. B. A., & Chiarello, M. D. (2015). Use of baru (Brazilian almond) waste from physical extraction of oil to produce flour and cookies. LWT - Food Science and Technology, 60(1), 50–55.  https://doi.org/10.1016/j.lwt.2014.09.035.CrossRefGoogle Scholar
  140. Piscopo, A., Romeo, F., Petrovicova, B., & Poiana, M. (2010). Effect of the harvest time on kernel quality of several almond varieties (Prunus dulcis (Mill.) D.A. Webb). Scientia Horticulturae, 125(1), 41–46.  https://doi.org/10.1016/j.scienta.2010.02.015.CrossRefGoogle Scholar
  141. Piscopo, A., Romeo, F. V., & Poiana, M. (2011). Effect of drying process on almond (Prunus dulcis (Mill.) D.A. Webb) kernel composition. Rivista Italiana Delle Sostanze Grasse, 88(3), 153–160.Google Scholar
  142. Prats-Moya, S., Grané-Teruel, N., Berenguer-Navarro, V., & Martín-Carratalá, M. L. (1999). A chemometric study of genotypic variation in triacylglycerol composition among selected almond cultivars. Journal of the American Oil Chemists’ Society, 76(2), 267–272.  https://doi.org/10.1007/s11746-999-0229-6.CrossRefGoogle Scholar
  143. Rabadán, A., Álvarez-Ortí, M., Gómez, R., Pardo-Giménez, A., & Pardo, J. E. (2017). Suitability of Spanish almond cultivars for the industrial production of almond oil and defatted flour. Scientia Horticulturae, 225, 539–546.  https://doi.org/10.1016/j.scienta.2017.07.051.CrossRefGoogle Scholar
  144. Remaud, G., Debon, A. A., Martin Martin, Y., Martin, G. G., & Martin, G. J. (1997). Authentication of bitter almond oil and cinnamon oil: Application of the SNIF-NMR method to benzaldehyde. Journal of Agricultural and Food Chemistry, 45(10), 4042–4048.  https://doi.org/10.1021/jf970143d.CrossRefGoogle Scholar
  145. Rizzolo, A., Baldo, C., & Polesello, A. (1991). Application of high-performance liquid chromatography to the analysis of niacin and biotin in Italian almond cultivars. Journal of Chromatography, 553, 187–192.  https://doi.org/10.1016/S0021-9673(01)88487-9.CrossRefGoogle Scholar
  146. Robbins, K. S., Shin, E. C., Shewfelt, R. L., Eitenmiller, R. R., & Pegg, R. B. (2011). Update on the healthful lipid constituents of commercially important tree nuts. Journal of Agricultural and Food Chemistry, 59(22), 12083–12092.  https://doi.org/10.1021/jf203187v.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Romojaro, F., Riquelme, F., Giménez, J. L., & Llorente, S. (1988). Study on carbohydrate fractions in some almonds cultivars of the Spanish south-east. Fruit Science Reports, 15, 1–6.Google Scholar
  148. Roncero, J. M., Álvarez-Ortí, M., Pardo-Giménez, A., Gómez, R., Rabadán, A., & Pardo, J. E. (2016). Virgin almond oil: Extraction methods and composition. Grasas y Aceites, 67(3), e143.  https://doi.org/10.3989/gya.0993152.CrossRefGoogle Scholar
  149. Rosengarten, F. J. (1984). The book of edible nuts. New York: Walker and Co.Google Scholar
  150. Ruggeri, S., Cappelloni, M., Gambelli, L., Nicoli, S., & Carnovale, E. (1998). Chemical composition and nutritive value of nuts grown in Italy. Italian Journal of Food Science, 10(3), 243–251.Google Scholar
  151. Sabudak, T. (2007). Fatty acid composition of seed and leaf oils of pumpkin, walnut, almond, maize, sunflower and melon. Chemistry of Natural Compounds, 43(4), 465–467.  https://doi.org/10.1007/s10600-007-0163-5.CrossRefGoogle Scholar
  152. Sahad, N., Md Som, A., & Sulaiman, A. (2014). Review of green solvents for oil extraction from natural products using different extraction methods. Applied Mechanics and Materials, 661, 58–62.  https://doi.org/10.4028/www.scientific.net/AMM.661.58.CrossRefGoogle Scholar
  153. Sakar, E. H., El Yamani, M., & Rharrabti, Y. (2017). Variability of oil content and its physico-chemical traits from five almond (Prunis dulcis) cultivars grown in Northern Morocco. Journal of Materials and Environmental Science, 8(8), 2679–2686. https://www.jmaterenvironsci.com/Document/vol8/vol8_N8/287-JMES-Sakar.pdf.Google Scholar
  154. Salvo, F., Alfa, M., & Dugo, G. (1986). Variation de l’indice de peroxyde, des indices spectrométriques, de la composition en acides gras et stérols. Rivista Italiana Delle Sostanze Grasse, 63, 37–40.Google Scholar
  155. Sánchez-Bel, P., Egea, I., Martínez-Madrid, M. C., Flores, B., & Romojaro, F. (2008). Influence of irrigation and organic/inorganic fertilization on chemical quality of almond (Prunus amygdalus cv. Guara). Journal of Agricultural and Food Chemistry, 56(21), 10056–10062.  https://doi.org/10.1021/jf8012212.CrossRefPubMedGoogle Scholar
  156. Sanchez-Prado, L., Risticevic, S., Pawliszyn, J., & Psillakis, E. (2009). Low temperature SPME device: A convenient and effective tool for investigating photodegradation of volatile analytes. Journal of Photochemistry and Photobiology A, 206(2–3), 227–230.  https://doi.org/10.1016/j.jphotochem.2009.07.009.CrossRefGoogle Scholar
  157. Sang, S., Lapsley, K., Li, G., Jeong, W. S., Lachance, P. A., Ho, C. T., & Rosen, R. T. (2002a). Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). Journal of Agricultural and Food Chemistry, 50(8), 2459–2463.  https://doi.org/10.1021/jf011533+.CrossRefPubMedGoogle Scholar
  158. Sang, S., Kikuzaki, H., Lapsley, K., Rosen, R. T., Nakatani, N., & Ho, C. T. (2002b). Sphingolipid and other constituents from almond nuts (Prunus anygdalus Batsch). Journal of Agricultural and Food Chemistry, 50(16), 4709–4712.  https://doi.org/10.1021/jf020262f.CrossRefPubMedGoogle Scholar
  159. Sang, S., Li, G., Tian, S., Lapsley, K., Stark, R. E., Pandey, R. K., Rosen, R. T., & Ho, C. T. (2003). An unusual diterpene glycoside from the nuts of almond (Prunus amygdalus Batsch). Tetrahedron Letters, 44(6), 1199–1202.  https://doi.org/10.1016/S0040-4039(02)02794-6.CrossRefGoogle Scholar
  160. Sarkis, J. R., Correa, A. P., Michel, I., Brandeli, A. C. I., & Tessaro, I. C. (2014). Evaluation of the phenolic content and antioxidant activity of different seed and nut cakes from the edible oil industry. Journal of the American Oil Chemists’ Society, 91(10), 1773–1782.  https://doi.org/10.1007/s11746-014-2514-2.CrossRefGoogle Scholar
  161. Sathe, S. K., Seeram, H. H., Kshirsagar, D., & Lapsley, K. A. (2008). Fatty acid composition of California grown almonds. Journal of Food Science, 73(9), 607–614.  https://doi.org/10.1111/j.1750-3841.2008.00936.x.CrossRefGoogle Scholar
  162. Schirra, M., & Agabbio, M. (1989). Influence of irrigation on keeping quality of almond kernels. Journal of Food Science, 54(6), 1642–1645.  https://doi.org/10.1111/j.1365-2621.1989.tb05178.x.CrossRefGoogle Scholar
  163. Senesi, E., Rizzolo, A., Colombo, C., & Testoni, A. (1996). Influence of pre-processing storage conditions on peeled almond quality. Italian Journal of Food Science, 2, 115–125.Google Scholar
  164. Senter, S. D., Horvat, R. J., & Forbus, W. R. (1983). Comparative GLC-MS analysis of phenolic acids of selected tree nuts. Journal of Food Science, 48(3), 798–799.  https://doi.org/10.1111/j.1365-2621.1983.tb14902.x.CrossRefGoogle Scholar
  165. Sharma, A., & Gupta, M. N. (2004). Oil extraction from almond, apricot and rice bran by three-phase partitioning after ultrasonication. European Journal of Lipid Science and Technology, 106(3), 183–186.  https://doi.org/10.1002/ejlt.200300897.CrossRefGoogle Scholar
  166. Socias i Company, R., Kodad, O., Alonso, J. M., & Gradziel, T. M. (2008). Almond quality: A breeding perspective. In J. Janick (Ed.), Horticultural reviews (pp. 197–238). Hoboken: Wiley.  https://doi.org/10.1002/9780470380147.ch3.CrossRefGoogle Scholar
  167. Socias I Company, R., Alonso, J. M., Kodad, O., Espada, J. L., & Andreu, J. (2014). Kernel quality of local Spanish almond cultivars: Provenance variability and end uses. Nucis, 16, 16–19.Google Scholar
  168. Soden, K., Vincent, K., Craske, S., Lucas, C., & Ashley, S. (2004). A randomized controlled trial of aromatherapy massage in a hospice setting. Palliative Medicine, 18(2), 87–92.  https://doi.org/10.1191/0269216304pm874oa.CrossRefPubMedGoogle Scholar
  169. Soler, L., Canellas, J., & Saura-Calixto, F. (1988). Oil content and fatty acid composition of developing almond seeds. Journal of Agricultural and Food Chemistry, 36(4), 695–697.  https://doi.org/10.1021/jf00082a007.CrossRefGoogle Scholar
  170. Stuetz, W., Schlörmann, W., & Glei, M. (2017). B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chemistry, 221, 222–227.  https://doi.org/10.1016/j.foodchem.2016.10.065.CrossRefPubMedGoogle Scholar
  171. Sultana, Y., Kohli, K., Athar, M., Khar, R. K., & Aqil, M. (2007). Effect of pre-treatment of almond oil on ultraviolet B-induced cutaneous photoaging in mice. Journal of Cosmetic Dermatology, 6(1), 14–19.  https://doi.org/10.1111/j.1473-2165.2007.00293.x.CrossRefPubMedGoogle Scholar
  172. Tan, Z., Yang, Z., Yi, Y., Wang, H., Zhou, W., Li, F., et al. (2016). Extraction of oil from flaxseed (Linum usitatissimum L.) using enzyme-assisted three-phase partitioning. Applied Biochemistry and Biotechnology, 179(8), 1325–1335.  https://doi.org/10.1007/s12010-016-2068-x.CrossRefPubMedGoogle Scholar
  173. Taşhan, T. S., & Kafkasli, A. (2012). The effect of bitter almond oil and massaging on striae gravidarum in primiparous women. Journal of Clinical Nursing, 21(11–12), 1570–1576.  https://doi.org/10.1111/j.1365-2702.2012.04087.x.CrossRefGoogle Scholar
  174. Tiên, D. T. K., Hadji-Minaglou, F., Antoniotti, S., & Fernandez, X. (2015). Authenticity of essential oils. Trends in Analytical Chemistry, 66, 146–157.  https://doi.org/10.1016/j.trac.2014.10.007.CrossRefGoogle Scholar
  175. Urpi-Sarda, M., Garrido, I., Monagas, M., Gómez - Cordovés, C., Medina-Remón, A., Andres-Lacueva, C., & Bartolomé, B. (2009). Profile of plasma and urine metabolites after the intake of almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols in humans. Journal of Agricultural and Food Chemistry, 57(21), 10134–10142.  https://doi.org/10.1021/jf901450z.CrossRefPubMedGoogle Scholar
  176. Vazquez Araujo, L., Enguix, L., Verdú, A., García García, E., & Carbonell Barrachina, A. (2008). Investigation of aromatic compounds in toasted almonds used for the manufacture of turrón. European Food Research and Technology, 227(1), 243–254.  https://doi.org/10.1007/s00217-007-0717-6.CrossRefGoogle Scholar
  177. Venkatachalam, M., & Sathe, S. K. (2006). Chemical composition of selected edible nut seeds. Journal of Agricultural and Food Chemistry, 54(13), 4705–4714.  https://doi.org/10.1021/jf0606959.CrossRefGoogle Scholar
  178. Vidhate, G. S., & Singhal, R. S. (2013). Extraction of cocoa butter alternative from kokum (Garcinia indica ) kernel by three phase partitioning. Journal of Food Engineering, 117(4), 464–466.  https://doi.org/10.1016/j.jfoodeng.2012.10.051.CrossRefGoogle Scholar
  179. Wien, M., Bleich, D., Raghuwanshi, M., Gould-Forgerite, S., Gomes, J., Monahan-Couch, L., & Oda, K. (2010). Almond consumption and cardiovascular risk factors in adults with prediabetes. Journal of the American College of Nutrition, 29(3), 189–197. https://pdfs.semanticscholar.org/23ff/7cb5723ad8485a507c63c2d3f5fe62ec6f4a.pdf?_ga=2.103272256.1164948374.1527717399-2132208873.1525105899.CrossRefGoogle Scholar
  180. Wijeratne, S. S. K., Amarowicz, R., & Shahidi, F. (2006a). Antioxidant activity of almonds and their by-products in food model systems. Journal of the American Oil Chemists’ Society, 83, 223–230.  https://doi.org/10.1007/s11746-006-1197-8.CrossRefGoogle Scholar
  181. Wijeratne, S. S. K., Abou-Zaid, M. M., & Shahidi, F. (2006b). Antioxidant polyphenols in almond and its coproducts. Journal of Agricultural and Food Chemistry, 54(2), 312–318.  https://doi.org/10.1021/jf051692j.CrossRefPubMedGoogle Scholar
  182. Xie, L., & Bolling, B. W. (2014). Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC-MS. Food Chemistry, 148, 300–306.  https://doi.org/10.1016/j.foodchem.2013.10.057.CrossRefPubMedGoogle Scholar
  183. Xie, L., Roto, A. V., & Bolling, B. W. (2012). Characterization of ellagitannins, gallotannins, and bound proanthocyanidins from California almond (Prunus dulcis) varieties. Journal of Agricultural and Food Chemistry, 60(49), 12151–12156.  https://doi.org/10.1021/jf303673r.CrossRefPubMedGoogle Scholar
  184. Yada, S., Lapsley, K., & Huang, G. (2011). A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 24(4–5), 469–480.  https://doi.org/10.1016/j.jfca.2011.01.007.CrossRefGoogle Scholar
  185. Yada, S., Huang, G., & Lapsley, K. (2013). Natural variability in the nutrient composition of California-grown almonds. Journal of Food Composition and Analysis, 30(2), 80–85.  https://doi.org/10.1016/j.jfca.2013.01.008.CrossRefGoogle Scholar
  186. Yang, J. (2009). Brazil nuts and associated health benefits: A review. LWT - Food Science and Technology, 42(10), 1573–1580.  https://doi.org/10.1016/j.lwt.2009.05.019.CrossRefGoogle Scholar
  187. Yildirim, A. N., Yildirim, F., Şan, B., Polat, M., & Sesli, Y. (2016). Variability of phenolic composition and tocopherol content of some commercial almond cultivars. Journal of Applied Botany and Food Quality, 89, 163–170.  https://doi.org/10.5073/JABFQ.2016.089.020.CrossRefGoogle Scholar
  188. Zacheo, G., Cappelo, M. S., Gallo, A., Santino, A., & Cappelo, A. R. (2000). Changes associated with post-harvest ageing in almond seeds. Lebensmittel-Wissenschaft und -Technologie - Food Science and Technology, 33(6), 415–423.  https://doi.org/10.1006/fstl.2000.0679.CrossRefGoogle Scholar
  189. Zamany, A. J., Samadi, G. R., Kim, D. H., Keum, Y. S., & Saini, R. K. (2017). Comparative study of tocopherol contents and fatty acids composition in twenty almond cultivars of Afghanistan. Journal of the American Oil Chemists’ Society, 94(6), 805–817.  https://doi.org/10.1007/s11746-017-2989-8.CrossRefGoogle Scholar
  190. Zhu, Y. (2014). Almond (Prunus dulcis (Mill.) D.A. Webb) fatty acids and tocopherols under different conditions. Ph.D. Thesis, University of Adelaide, Adelaide, Australia.Google Scholar
  191. Zhu, Y., Wilkinson, K. L., & Wirthensohn, M. G. (2015). Lipophilic antioxidant content of almonds (Prunus dulcis): A regional and varietal study. Journal of Food Composition and Analysis, 39, 120–127.  https://doi.org/10.1016/j.jfca.2014.12.003.CrossRefGoogle Scholar
  192. Zhu, Y., Wilkinson, K., & Wirthensohn, M. (2017). Changes in fatty acid and tocopherol content during almond (Prunus dulcis cv. Nonpareil) kernel development. Scientia Horticulturae, 225, 150–155.  https://doi.org/10.1016/j.scienta.2017.07.008.CrossRefGoogle Scholar
  193. Zlatanov, M., Ivanov, S., & Aitzetmueller, K. (1999). Phospholipid and fatty acid composition of Bulgarian nut oils. European Journal of Lipid Science and Technology, 101(11), 437–439.  https://doi.org/10.1002/(SICI)1521-4133(199911)101:11<437::AID-LIPI437>3.0.CO;2-T.CrossRefGoogle Scholar
  194. Zohary, D., & Hopf, M. (2000). Domestication of plants in the old world (3rd ed., p. 186). London: Oxford University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Slavica Čolić
    • 1
  • Gordan Zec
    • 2
  • Maja Natić
    • 3
  • Milica Fotirić-Akšić
    • 2
  1. 1.Institute for Science Application in AgricultureBelgradeRepublic of Serbia
  2. 2.University of Belgrade, Faculty of AgricultureBelgradeRepublic of Serbia
  3. 3.University of Belgrade, Faculty of ChemistryBelgradeRepublic of Serbia

Personalised recommendations