Pear (Pyrus communis) Seed Oil

  • Muhammad Mushtaq
  • Sumia Akram
  • Saira Ishaq
  • Ahmad Adnan


The pear (Pyrus communis) fruit offers a wide range of health benefits against macular degeneration, type 2 diabetes, osteoporosis, inflammatory problems and skin infections owing to the presence of phenolics, fibers, vitamins, boron, and other micro-nutrients. The pear fruit like many others of Rosaceae family contains an exceptionally small quantity of seeds (about ten tiny seeds per fruit) which can furnish 15–31% oleaginous attributes. The most fascinating oleaginous compounds in pear seed oil include unsaturated fatty acids, tocochromanols, and phytosterols. Out of pear seed oil fatty acids, linoleic acid (C18:2) level was found to be higher than most of the frequently used edible oils. Moreover, the presence of γ-tocopherol at an elevated level recommends that pear seed oil can inhibit human cancer progression and cell proliferation. The aroma compounds in pear seeds or their essential oil have not be explored yet but those compounds may provide phytonutrients of high therapautric and industrial importance. This chapter provides a comprehensive review of the nutritional composition of pear seed oil, the key bioactives responsible for its health benefits and organoleptic properties.


Pyrus communis seed oil Fatty acids Tocochromanols Minor bioactive 


  1. Aggarwal, B. B., Sundaram, C., Prasad, S., & Kannappan, R. (2010). Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochemical Pharmacology, 80, 1613–1631.CrossRefGoogle Scholar
  2. Aust, O., Sies, H., Stahl, W., & Polidori, M. C. (2001). Analysis of lipophilic antioxidants in human serum and tissues: Tocopherols and carotenoids. Journal of Chromatography. A, 936, 83–93.CrossRefGoogle Scholar
  3. Benn, F. W., Dattilo, M., Cornell, W. L. (1996). Flotation of lead sulfides using rapeseed oil. United States patent No US 5,544,760. 1996 Aug 13.Google Scholar
  4. Borges, G., Mullen, W., & Crozier, A. (2010). Comparison of the polyphenolic composition and antioxidant activity of European commercial fruit juices. Food & Function, 1, 73–83.CrossRefGoogle Scholar
  5. Calder, P. C. (2015). Functional roles of fatty acids and their effects on human health. Journal of Parenteral and Enteral Nutrition, 39, 18S–32S.CrossRefGoogle Scholar
  6. Chen, Z.-Y., Jiao, R., & Ma, K. Y. (2008). Cholesterol-lowering nutraceuticals and functional foods. Journal of Agricultural and Food Chemistry, 56, 8761–8773.CrossRefGoogle Scholar
  7. Davis, B. (2005). Essential fatty acids in vegetarian nutrition. Andrews University Nutrition Department. Available at; Accessed on August. 18, 2005.Google Scholar
  8. Deineka, V. I., & Deineka, L. A. (2004). Type composition of triglycerides from seed oils. II. Triglycerides from certain cultivated plants of the Rosaceae Family. Chemistry of Natural Compounds, 40, 293–294.CrossRefGoogle Scholar
  9. Eitenmiller, R. R., & Lee, J. (2004). Vitamin E: Food chemistry, composition, and analysis. Boca Raton: CRC Press.CrossRefGoogle Scholar
  10. Fromm, M., Bayha, S., Kammerer, D. R., & Carle, R. (2012). Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different Rosaceae species. Journal of Agricultural and Food Chemistry, 60, 10733–10742.CrossRefGoogle Scholar
  11. Gallardo, R. K., Kupferman, E. M., Beaudry, R. M., Blankenship, S. M., Mitcham, E. J., & Watkins, C. B. (2011). Market quality of Pacific Northwest pears. Journal of Food Distribution Research, 42, 89–99.Google Scholar
  12. Górnaś, P., Rudzińska, M., & Segliņa, D. (2014a). Lipophilic composition of eleven apple seed oils: A promising source of unconventional oil from industry by-products. Industrial Crops and Products, 60, 86–91.CrossRefGoogle Scholar
  13. Górnaś, P., Siger, A., Czubinski, J., Dwiecki, K., Segliņa, D., & Nogala-Kalucka, M. (2014b). An alternative RP-HPLC method for the separation and determination of tocopherol and tocotrienol homologues as butter authenticity markers: A comparative study between two European countries. European Journal of Lipid Science and Technology, 116, 895–903.CrossRefGoogle Scholar
  14. Górnaś, P., Mišina, I., Lāce, B., Lācis, G., & Segliņa, D. (2015). Tocochromanols composition in seeds recovered from different pear cultivars: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. LWT- Food Science and Technology, 62, 104–107.CrossRefGoogle Scholar
  15. Górnaś, P., Rudzińska, M., Raczyk, M., Mišina, I., Soliven, A., & Segliņa, D. (2016). Chemical composition of seed oils recovered from different pear (Pyrus communis L.) cultivars. Journal of the American Oil Chemists' Society, 93, 267–274.CrossRefGoogle Scholar
  16. Greenbank, G. R., & Holm, G. E. (1924). Some factors concerned in the autoxidation of fats. Industrial and Engineering Chemistry, 16, 598–601.CrossRefGoogle Scholar
  17. Griffith, M. P. (2004). The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): New molecular evidence. American Journal of Botany, 91, 1915–1921.CrossRefGoogle Scholar
  18. Hashemi, S. M. B., Khaneghah, A. M., Barba, F. J., Lorenzo, J. M., Rahman, M. S., Amarowicz, R., & Movahed, M. D. (2018). Characteristics of wild pear (Pyrus glabra Boiss) seed oil and its oil-in-water emulsions: A novel source of edible oil. European Journal of Lipid Science and Technology, 120, 1700284.CrossRefGoogle Scholar
  19. Heimeur, N., Idrissi Hassani, L. M., Serghini, M. A., Bessiere, J. M. (2016). Study of volatile compounds of Pyrus mamorensis Trab. a characteristic plant of Mamora forest (north-western Morocco). Moroccan Journal of Chemistry, 4(1), 1-4.Google Scholar
  20. ISO. (1978). Animal and vegetable fats and oils: preparation of methyl esters of fatty acids. Geneva: International Organization for Standardization.Google Scholar
  21. Kemper, T. G. (2005). Oil extraction. Bailey’s industrial oil and fat products.  John Wiley & Sons, Inc. pp: 63-68Google Scholar
  22. Kritchevsky, D., & Chen, S. C. (2005). Phytosterols-health benefits and potential concerns: A review. Nutrition Research, 25, 413–428.CrossRefGoogle Scholar
  23. Lamsal, B. P., Murphy, P. A., & Johnson, L. A. (2006). Flaking and extrusion as mechanical treatments for enzyme-assisted aqueous extraction of oil from soybeans. Journal of the American Oil Chemists’ Society, 83, 973–979.CrossRefGoogle Scholar
  24. Lesellier, E., Destandau, E., Grigoras, C., Fougère, L., & Elfakir, C. (2012). Fast separation of triterpenoids by supercritical fluid chromatography/evaporative light scattering detector. Journal of Chromatography. A, 1268, 157–165.CrossRefGoogle Scholar
  25. Lairon D. (2011). Nutritional quality and safety of organic food. A review. Médecine & Nutrition. 47(1):19–31.Google Scholar
  26. Massimo, C., Lucio, T., Jesus, M., Giovanni, L., & Caramia, G. M. (2009). Extra virgin olive oil and oleic acid. Nutrición Clinica y Dietetica Hospitalaria., 29, 12–24.Google Scholar
  27. Matthäus, B., & Musazcan Özcan, M. (2015). Oil content, fatty acid compon and distributions of vitamin-E-active compounds of some fruit seed oils. Antioxidants, 4, 124.CrossRefGoogle Scholar
  28. Mushtaq, M. (2018). Extraction of fruit juice: An overview A2 – Rajauria, Gaurav. In B. K. Tiwari (Ed.), Fruit juices (pp. 131–159). San Diego: Academic.CrossRefGoogle Scholar
  29. Nestola, M., & Schmidtositi, T. C. (2016). Fully automated determination of the sterol composition and total content in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection. Journal of Chromatography. A, 1463, 136–143.CrossRefGoogle Scholar
  30. Neunert, G., Górnaś, P., Dwiecki, K., Siger, A., & Polewski, K. (2015). Synergistic and antagonistic effects between alpha-tocopherol and phenolic acids in liposome system: Spectroscopic study. European Food Research and Technology, 241, 749–757.CrossRefGoogle Scholar
  31. Nogala-Kałucka, M., Dwiecki, K., Siger, A., Górnaś, P., Polewski, K., & Ciosek, S. (2013). Antioxidant synergism and antagonism between tocotrienols, quercetin and rutin in model system. Acta Alimentaria, 42, 360–370.CrossRefGoogle Scholar
  32. Olmedilla, B., Granado, F., Blanco, I., & Vaquero, M. (2003). Lutein, but not α-tocopherol, supplementation improves visual function in patients with age-related cataracts: A 2-y double-blind, placebo-controlled pilot study. Nutrition, 19, 21–24.CrossRefGoogle Scholar
  33. Reiland, H., & Slavin, J. (2015). Systematic review of pears and health. Nutrition Today, 50, 301.CrossRefGoogle Scholar
  34. Simopoulos, A. P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine, 233, 674–688.CrossRefGoogle Scholar
  35. Statistics, F. (2016). Productions, crops. Retrieved 04 Aug 2018.Google Scholar
  36. Yahia, E. M., de Jesús Ornelas-Paz, J., Emanuelli, T., Jacob-Lopes, E., Zepka, L. Q., & Cervantes-Paz, B. (2017). Chemistry, stability, and biological actions of carotenoids. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2, 285.CrossRefGoogle Scholar
  37. Yukui, R., Wenya, W., Rashid, F., & Qing, L. (2009). Fatty acids composition of apple and pear seed oils. International Journal of Food Properties, 12, 774–779.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Mushtaq
    • 1
  • Sumia Akram
    • 2
  • Saira Ishaq
    • 1
  • Ahmad Adnan
    • 1
  1. 1.Department of ChemistryGovernment College UniversityLahorePakistan
  2. 2.Department of ChemistryMinhaj UniversityLahorePakistan

Personalised recommendations