Black Seed (Nigella sativa) Oil

  • Omprakash H. Nautiyal


Black cumin (Nigella Sativa) seed is native to Asia and is often known as black seed oil. Studies on the black cumin seed oil have shown combating superbugs like Methicillin-resistant Staphylococcus aureus (MRSA) or Helicobacter pylori. Nigella Sativa seeds are carminative, helping aid in digestion, gas, bloating, and stomach pain. The seed oil contains myristic acid, palmitic acid, stearic acid, palmitoleic acid, oleic acid, linoleic acid, and arachidonic acid. The seeds also contain proteins and vitamins B1, B2, B3, calcium, folate, iron, copper, zinc and phosphorous. Over 600 studies have shown the effect of black cumin seed oil with promising potential of using black cumin seed oil for dealing with autoimmune disease. The most studied active compounds in black seed oil were crystalline nigellone and thymoquinone. Anti-asthmatic effects of black seed oil have been established and found to be more effective than conventional treatments. Similar properties make it beneficial for relieving allergies in human. Skin diseases, like eczema and psoriasis are also treated with black seed oil. It is helpful in soothing inflammation and improving the healing of skin headings. The growth of colon cancer cells without any side effects have also shown to be inhibited by black seed oil. This chapter will provide a scientific review on the composition and functional properties of black cumin seed oil.


Black caraway Black cumin Nigellone Thymoquinone Antimicrobial activity 



Anti-epilepsy drugs


Regulators of cell signaling






Free fatty acids


Ferrous reducing antioxidant capacity


Nigella seed oil


Root mean square error of calibration


Total fatty acids


Unsaturated fatty acids


  1. Abdel-Wahhab, M. A., & Ali, S. E. (2005). Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. Journal of Applied Toxicology, 5, 218–223.CrossRefGoogle Scholar
  2. Abukhader, M. M. (2013). Department of pharmacy, Oman Medical College, Muscat, Sultanate of Oman, “Thymoquinone in the clinical treatment of cancer: Fact or fiction?”. Pharmacognosy Reviews, 7(14), 117–120. PMID: 24347919.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agradi, E., Fico, G., Cillo, F., Francisci, C., & Tomè, F. (2002). Estrogenic activity of Nigella damascena extracts, evaluated using a recombinant yeast screen. Phytotherapy Research, 16, 414–416.PubMedCrossRefGoogle Scholar
  4. Al-Hader, A., Aqel, M., & Hasan, Z. (1993). Hypoglycemic effects of the volatile oil of Nigella sativa seeds. International Journal of Pharmacognosy, 31(2), 96–100.CrossRefGoogle Scholar
  5. Ali, B. H., & Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytotherapy Research, 17, 299–305.PubMedCrossRefGoogle Scholar
  6. Ali, M. A., Sayeed, M. A., Alam, M. S., Yeasmin, M. S., Khan, A. M., & Muhamad, I. I. (2012). Characteristics of oils and nutrient contents of Nigella sativa Linn. and Trigonella foenum-graecum seeds. Bulletin of the Chemical Society of Ethiopia, 26, 55–64.Google Scholar
  7. Al-Kayssi, A. W., Shihab, R. M., & Mustafa, S. H. (2011). Impact of soil water stress on nigellone oil content of black cumin seeds grown in calcareous-gypsifereous soils. Agricultural Water Management, 100, 46–57.CrossRefGoogle Scholar
  8. Alzoreky, N. S., & Nakahara, K. (2003). Antimicrobial activity of extracts from some edible plants commonly consumed in Asia. International Journal of Food Microbiology, 80, 223–230.PubMedCrossRefGoogle Scholar
  9. Aqel, M. B. (1993). Effects of Nigella sativa seeds on intestinal smooth muscle. International Journal of Pharmacognosy, 31(1), 55–60.CrossRefGoogle Scholar
  10. Aqel, M. (1995). The relaxing effects of the volatile oil of Nigella sativa seeds on vascular smooth muscles. Dirasat, 19, 91–100.Google Scholar
  11. Aqel, & Shaheen, R. (1996). Effects of the volatile oil of Nigella sativa seeds on the uterine smooth muscle of rat and guinea pig. Journal of Ethnopharmacology, 52(1), 23–26.PubMedCrossRefGoogle Scholar
  12. Atta, M. B. (2003). Some characteristics of Nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chemistry, 83, 63–68.CrossRefGoogle Scholar
  13. Badary, O. A., Taha, R. A., Gamal el-Din, A. M., & Abdel-Wahab, M. H. (2003). Thymoquinone is a potent superoxide anion scavenger. Drug and Chemical Toxicology, 26, 87–98.PubMedCrossRefGoogle Scholar
  14. Ballero, M., & Fresu, I. (1993). Le piante di uso officinale nella Barbagia di Seui (Sardegna Centrale). Fitoterapia, 64, 141–150.Google Scholar
  15. Bekemeier, H., Leuschner, G., & Schmollack, W. (1967). Antipyretische, antiödematöse und analgetische Wirkung von Damascenin im Vergleich mit Acetylsalicylsäure und Phenylbutazon. Archives Internationales de Pharmacodynamie et de Thérapie, 168, 199–211.PubMedGoogle Scholar
  16. Boskabady, M. H., & Shirmohammadi, B. (2002). Effect of Nigella sativa on isolated guinea pig trachea. Archives of Iranian Medicine, 5(2), 103–107.Google Scholar
  17. Bourgou, S., Pichette, A., Marzouk, B., & Legault, J. (2010a). Bioactivities of black cumin essential oil and its main terpenes from Tunisia. South African Journal of Botany, 76, 210–216.CrossRefGoogle Scholar
  18. Bourgou, S., Bettaieb, I., Saidani, M., & Marzouk, B. (2010b). Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions. Journal of Agricultural and Food Chemistry, 58, 12399–12406.PubMedCrossRefGoogle Scholar
  19. Butta, M. S., & Sultana, M. T. (2010). Nigella sativa: Reduces the risk of various maladies. Critical Reviews in Food Science and Nutrition, 50, 654–665.CrossRefGoogle Scholar
  20. Cheikh-Rouhou, S., Besbes, S., Hentati, B., Blecker, C., Deroanne, C., & Attia, H. (2007). Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chemistry, 101(2), 673–681. Scholar
  21. Cikman, O., Ozkan, A., Aras, A. B., Soylemez, O., Alkis, H., Taysi, S., & Karaayvaz, M. (2014). Radioprotective effects of Nigella Sativa oil against oxidative stress in liver tissue of rats exposed to total head irradiation. Journal of Investigative Surgery, 27(5), 262–266. PMID: 24679182.PubMedCrossRefGoogle Scholar
  22. D’Antuono, L. F., Moretti, A., & Lovato, A. F. S. (2002). Seed yield, yield components, oil content and essential oil content and composition of Nigella sativa L. and Nigella damascena L. Industrial Crops and Products, 15, 59–69.CrossRefGoogle Scholar
  23. Ferdous, A. J., Islam, S. N., Ahsan, M., Hasan, C. M., & Ahmed, Z. U. (1992). In vitro antibacterial activity of the volatile oil of Nigella sativa seeds against multiple drug-resistant isolates of Shigella spp. and isolates of Vibrio cholerae and Escherichia coli. Phytotherapy Research, 6(3), 137–140.CrossRefGoogle Scholar
  24. Gargari, B., Attary, V. E., Rafraf, M., & Gorbani, A. (2009). Effect of dietary supplementation with Nigella sativa L. on serum lipid profile, lipid peroxidation and antioxidant defense system in hyperlipidemic rabbits. Journal of Medicinal Plants Research, 3, 815–821.Google Scholar
  25. Gharby, S., Harhar, H., Guillaume, D., Raudani, A., Boulbaroud, S., Ibrahimi, M., Ahmed, M., Sultana, S., Hadda, T. B., Moussaoui, I. C., & Charrouf, Z. (2015). Chemical investigation of Nigella sativa L. seed oil produced in Morocco. Journal of the Saudi Society of Agricultural Sciences, 14(2), 172–177.CrossRefGoogle Scholar
  26. Hai, Z., Wang, J. (2006). Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors and Actuators B 119(2):449–455.CrossRefGoogle Scholar
  27. Hamrouni-Sellami, I., Kchouk, M. E., & Marzouk, B. (2003). Lipid and aroma composition of black cumin (Nigella sativa L.) seeds from Tunisia. Journal of Food Biochemistry, 32, 335–352.CrossRefGoogle Scholar
  28. Hanafy, M. S., & Hatem, M. E. (1991). Studies on the antimicrobial activity of Nigella sativa seed (black cumin). Journal of Ethnopharmacology, 34, 275–278.Google Scholar
  29. Heiss, A. G., & Oeggl, K. (2005). The oldest evidence of Nigella damascena L. (Ranunculaceae and its possible introduction to central Europe). Vegetation History and Archaeobotany, 14(4), 562–570.CrossRefGoogle Scholar
  30. Hort, A. (Ed.). (1916). Theophrastos Πɛρίϕυτικώνίστοριών [Peri phytikon historion, Enquiry into plants] vol 2 reprinted 1961. Cambridge, MA: Harvard University Press.Google Scholar
  31. Hosseinzadeh, H., Parvardeh, S., Asl, M. N., Sadeghnia, H. R., & Ziaee, T. (2007). Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemiareperfusion injury in rat hippocampus. Phytomedicine, 14, 621–627.PubMedCrossRefGoogle Scholar
  32. Houghton, P. J., Zarka, R., de las Heras, B., & Hoult, J. R. (1995). Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Medica, 61, 33–36.PubMedCrossRefGoogle Scholar
  33. Ilhan, A., Gurel, A., Armutcu, F., Kamisli, S., & Iraz, M. (2005). Antiepileptogenic and antioxidant effects of Nigella sativa oil against pentylenetetrazol-induced kindling in mice. Neuropharmacology, 49, 456–464.PubMedCrossRefGoogle Scholar
  34. Ismail, M., Al-Naqeep, G., & Chan, K. W. (2010). Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radical Biology & Medicine, 48(5), 664–672.CrossRefGoogle Scholar
  35. Kanter, M., Coskun, O., & Uysal, H. (2006). The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Archives of Toxicology, 80, 217–224.PubMedCrossRefGoogle Scholar
  36. Kaskoos, R. A. (2011). Fatty acids composition of black cumin oil from Iraq. Research Journal of Medicinal Plants, 5(1), 85–89.CrossRefGoogle Scholar
  37. Kausar, H., Abidin, L., & Mujeeb, M. (2018). Comparative assessment of extraction methods and quantitative estimation of thymoquinone in the seeds of Nigella sativa L by HPLC. International Journal of Pharmacognosy and Phytochemical Research.
  38. Khan, M. A. (1999). Chemical composition and medicinal properties of Nigella sativa Linn. Inflammopharmacology, 7, 15–35.PubMedCrossRefGoogle Scholar
  39. Khan, N., Sharma, S., & Sultana, S. (2003). Nigella sativa (black cumin) ameliorates potassium bromate-induced early events of carcinogenesis: Diminution of oxidative stress. Human & Experimental Toxicology, 22, 193–203.CrossRefGoogle Scholar
  40. Khan, M. A., Chen, H. C., Tania, M., & Zhang, D. Z. (2011). Anticancer activities of Nigella sativa (black cumin). African Journal of Traditional, Complementary, and Alternative Medicines, 8(5), 226–232. PMID: 22754079.PubMedPubMedCentralGoogle Scholar
  41. Khanna, T., Zaidi, F. A., & Dandiya, P. C. (1993). CNS and analgesic studies on Nigella sativa. Fitoterapia, 64(5), 407–410.Google Scholar
  42. Khoddami, A., Ghazali, H. M., Yassoralipour, A., Ramakrishnan, Y., & Ganjloo, A. (2011). Physicochemical characteristics of Nigella seed (Nigella sativa L.) oil as affected by different extraction methods. Journal of the American Oil Chemists’ Society, 88(4), 533–540.CrossRefGoogle Scholar
  43. Kishore, K. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific Journal of Tropical Biomedicine, 3(5), 337–352.Google Scholar
  44. Kruk, I., Michalska, T., Lichszteld, K., Kladna, A., & Aboul-Enein, H. Y. (2000). The effect of thymol and its derivatives on reactions generating reactive oxygen species. Chemosphere, 41, 1059–1064.PubMedCrossRefGoogle Scholar
  45. Lai, Y. W., Kemsley, E. K., & Wilson, R. H. (1995). Quantitative analysis of potential adulterants of extra virgin olive oil using infrared spectroscopy. Food Chemistry, 53(1), 95–98.CrossRefGoogle Scholar
  46. Lee, D. S., Lee, E. S., Kim, H. J., Kim, S. O., & Kim, K. (2001). Reversed phase liquid chromatographic determination of triacylglycerol composition in sesame oils and the chemometric detection of adulteration. Analytica Chimica Acta, 429(2), 321–330.CrossRefGoogle Scholar
  47. Mabrouk, G. M., Moselhy, S. S., Zohny, S. F., Ali, E. M., Helal, T. E., Amin, A. A., & Khalifa, A. A. (2002). Inhibition of methylnitrosourea (MNU) induced oxidative stress and carcinogenesis by orally administered bee honey and Nigella grains in Sprague Dawely rats. Journal of Experimental & Clinical Cancer Research, 21(3), 341–346. PMID: 12385575.Google Scholar
  48. Mahfouz M, El-Dakhakhny M. (1960) ome chemical and pharmacological properties of the new antiasthmatic drug, Nigellone. Egyptian Pharmaceutical Bulletin, 6, 357–360.Google Scholar
  49. Mahgoub, S., Ramadan, M. F., & El-Zahar, K. (2013). Cold pressed Nigella sativa oil inhibits the growth of food-borne pathogens and improves the quality of Domiati cheese. Journal of Food Safety, 33, 470–480.CrossRefGoogle Scholar
  50. Mansour, M. A., Ginawi, O. T., El-Hadiyah, T., El-Khatib, A. S., Al-Shabanah, O. A., & Al-Sawaf, H. A. (2001). Effects of volatile oil constituents of Nigella sativa on carbon tetrachloride-induced hepatotoxicity in mice: Evidence for antioxidant effects of thymoquinone. Research Communications in Molecular Pathology and Pharmacology, 110, 239–251.PubMedGoogle Scholar
  51. Matthäus, B., & Özcan, M. M. (2011). Fatty acids, tocopherol and sterol contents of some Nigella species seed oil. Czech Journal of Food Sciences, 29, 145–150.CrossRefGoogle Scholar
  52. Mohammad, S. A., Mehrnoush, D., Nizal, S., Sedigeh, A., & Alireza, G. (2012). Clinical evaluation of Nigella Sativa seeds for the treatment of hyperlipidemia: A randomized, placebo controlled clinical trial. Medical Archives Sarajevo, 66(3), 198. Scholar
  53. Mohammad, N. K., Manap, M. Y. A., Tan, C. P., Belal, J. M., Alhelli, A. M., & Hussin, S. M. (2016). The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed (Nigella sativa L.) oil. Evidence-Based Complementary and Alternative Medicine, 2016, 1–12. PMCID: PMC5015008.CrossRefGoogle Scholar
  54. Nagi, M. N., Alam, K., Badary, O. A., al-Shabanah, O. A., al-Sawaf, H. A., & al-Bekairi, A. M. (1999). Thymoquinone protects against carbon tetrachloride hepatotoxicity in mice via an antioxidant mechanism. Biochemistry and Molecular Biology International, 47, 153–159.PubMedGoogle Scholar
  55. Nergiz, C., & Otles, S. (1993). Chemical composition of Nigella sativa L. seeds. Food Chemistry, 48, 259–261.CrossRefGoogle Scholar
  56. Nickavar, B. F., Javidnia, M. K., & Amoli, M. A. R. (2003). Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Zeitschrift für Naturforschung. Section C, 58, 629–631.Google Scholar
  57. Nurrulhidayah, A. F., Che Man, Y. B., Al-Kahtani, H. A., & Rohman, A. (2011). Application of FTIR spectroscopy coupled with chemometrics for authentication of Nigella sativa seed oil. Spectroscopy, 25(5), 243–250.CrossRefGoogle Scholar
  58. Ramadan, M. F. (2007). Nutritional value, functional properties and nutraceuticals applications of black cumin (Nigella sativa L.): An overview. International Journal of Food Science and Technology, 42, 1208–1218.CrossRefGoogle Scholar
  59. Ramadan, M. F., & Morsel, J. T. (2002a). Neutral lipids classes of black cumin (Nigella sativa L.) seed oil. European Food Research and Technology, 214, 202–206. Scholar
  60. Ramadan, M. F., & Morsel, J. T. (2002b). Direct isocratic normal-phase assay of fat-soluble vitamins and beta-carotene in oilseeds. European Food Research and Technology 214(6), 521–527.Google Scholar
  61. Ramadan, M. F., & Morsel, J. T. (2003a). Analysis of glycolipids from black cumin (Nigella sative L.), coriander (Coriandrum sativum L.) and Niger (Guizotia abyssinica Cass.) oil seeds. Food Chemistry, 80, 197–204.CrossRefGoogle Scholar
  62. Ramadan, M. F., & Morsel, J. T. (2003b). Determination of lipid classes and fatty acid profile of niger (Guizotia abyssinica Cass.) seed oil. Phytochemical Analysis 14(6), 366–370.Google Scholar
  63. Ramadan, M. F., & Morsel, J. T. (2004). Oxidative stability of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and Niger (Guizotia abyssinica Cass.) crude seed oils upon stripping. European Journal of Lipid Science and Technology, 106, 35–43. Scholar
  64. Randhawa, M. A., & Alghamdi, M. S. (2011). Anticancer activity of Nigella sativa (black seed)-a review. The American Journal of Chinese Medicine, 39(6), 1075–1091. PMID: 22083982.PubMedCrossRefGoogle Scholar
  65. Rathee, P. S., Mishra, S. H., & Kaushal, R. (1982). Antimicrobial activity of essential oil, fixed oil and unsaponifiable matter of Nigella sativa Linn. Indian Journal of Pharmaceutical Sciences, 44(1), 8–10.Google Scholar
  66. Rohman, A., & Ariani, R. (2013). Authentication of Nigella sativa seed oil in binary and ternary mixtures with corn oil and soybean oil using FTIR spectroscopy coupled with partial least square. The Scientific World Journal, 1–6. doi: Scholar
  67. Seo, H.-Y., Ha, J., Shin, D.-B., et al. (2010). Detection of corn oil in adulterated sesame oil by chromatography and carbon isotope analysis. Journal of the American Oil Chemists’ Society, 87(6), 621–626.CrossRefGoogle Scholar
  68. Shawki, M., El-Wakeel, L., Shatla, R., EL-Saeed, G., Ibrahim, S., & Badary, O. (2013). The clinical outcome of adjuvant therapy with black seed oil on intractable pediatric seizures: A pilot study. Epileptic Disorders, 15(3), 295–301.PubMedGoogle Scholar
  69. Singh, G., Marimuthu, P., Heluani, C. S., & Catalan, C. (2005). Chemical constituents and antimicrobial and antioxidant potentials of essential oil and acetone extract of Nigella sativa seeds. Journal of Science and Food Agriculture, 85, 2297–2306.CrossRefGoogle Scholar
  70. Solati, Z., Baharin, B. S., & Bagheri, H. (2014). Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds. Journal of the American Oil Chemists’ Society, 91(2), 295–300. Scholar
  71. Sultan, M. T., Butt, M. S., Anjum, F. M., Jamil, A., Akhtar, S., & Nasir, M. (2009). Nutritional profile of indigenous cultivar of black cumin seeds and antioxidant potential of its fixed and essential oil. Pakistan Journal of Botany, 41, 1321–1330.Google Scholar
  72. Swamy, S. M. K., & Tan, B. K. H. (2000). Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. Journal of Ethnopharmacology, 70(1), 1–7.PubMedCrossRefGoogle Scholar
  73. Tariq, S., Masud, T., Tariq, S., & Sohail, A. (2014). Black seed (Nigella sativa) possess bioactive compounds act as anti-helicobacter pylori agent. World Journal of Pharmaceutical Sciences, 2(2), 203–209.Google Scholar
  74. Toma, C. C., Simu, G. M., Hanganu, D., Neliolah, Vata, G. F. M., Hammami, C., & Hammami, M. (2013). Chemical composition of Tunisian Nigella sativa note II profile on fatty oil. Farmácia, 61(3), 454–458.Google Scholar
  75. Ur Rehman, F., Khan, M. A., & Marwat, S. K. (2009). Effect of prophetic medicine kalonji (Nigella sativa L.) on lipid profile of human beings an in vivo approach. World Applied Sciences Journal, 6(8), 1053–1057.Google Scholar
  76. Viuda-Marto, M., Mohamady, M. A., Fernández-López, J., Abd ElRazik, K. A., Omer, E. A., Pérez-Alvarez, J. A., & Sendra, E. (2011). In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control, 22, 1715–1722.CrossRefGoogle Scholar
  77. Woo, C. C., Kumar, A. P., Sethi, G., & Tan, K. H. (2012). Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochemical Pharmacology, 83, 443–451. PMID: 22005518.PubMedCrossRefGoogle Scholar
  78. Worthen, D. R., Ghosheh, O. A., & Crooks, P. A. (1998). The in vitro anti-tumor activity of some crude and purified components of black seed, Nigella sativa L. Anticancer Research, 18(3), 1527–1532.PubMedGoogle Scholar
  79. Zohary, D., & Hopf, M. (2000). Domestication of plants in the old world (3rd ed., p. 206). Oxford University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Omprakash H. Nautiyal
    • 1
  1. 1.Department of ChemistryLovely Professional UniversityGT Road, ChaheruIndia

Personalised recommendations