Semecarpus anacardium Oil

  • Mohamed Fawzy RamadanEmail author


Fruits and fruit oil of Semecarpus anacardium (family Anacardiaceae) have several applications in the Indian Ayurvedic and Siddha systems of medicine. Concerning the potential utilization, knowledge of the composition of Semecarpus anacardium oil is of major importance. Solvent extractable lipids from S. anacardium seeds accounted for approx. 36%, which confirms that S. anacardium seeds are a rich source of oil. Linoleic, palmitic and oleic were the major fatty acids. Neutral lipids were the main lipid class followed by glycolipids and phospholipids. β-sitosterol, campesterol and stigmasterol were the main phytosterols detected in the oil, while δ-tocopherol and β-tocopherol were the main tocols. S. anacardium seed oil exhibited strong antiradical action toward 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical and galvinoxyl radical. This chapter reviews the chemical composition and functional traits of Semecarpus anacardium seed oil.


Lipid classes Lipid-soluble bioactive compounds Sterols Tocopherols Antiradical action 


  1. Buenz, E. J., Schnepple, D. J., Bauer, B. A., Elkin, P. L., Riddle, J. M., & Motley, T. J. (2004). Techniques: Bioprospecting historical herbal texts by hunting for new leads in old tomes. Trends in Pharmacological Sciences, 25, 494–498.CrossRefGoogle Scholar
  2. Chakraborty, S., Roy, M., Taraphdar, A. K., & Bhattacharya, R. K. (2004). Cytotoxic effect of root extract of Tiliacora racemosa and oil of Semecarpus anacardium nut in human tumour cells. Phytotherapy Research, 18, 595–600.CrossRefGoogle Scholar
  3. Dwivedi, M. K., Nariya, M., Galib, R., & Prajapati, P. K. (2018). Anti-hyperlipidaemic effects of fresh and cured Bhallataka Kshaudra (Semecarpus anacardium L.) in animals. Indian Journal of Natural Products and Resources, 9, 143–150.Google Scholar
  4. Gouthaman, T., Kavitha, M. S., Ahmed, B. A., Kumar, T. S., & Rao, M. V. (2008). A review on Semecarpus anacardium L: An anticancer medicinal plant. In V. K. Singh, N. J. Govil, & R. K. Sharma (Eds.), Phytopharmacology and therapeutic value (pp. 193–221). Houston: Studium Press.Google Scholar
  5. Kallio, H., Yang, B., Peippo, P., Tahvonen, R., & Pan, R. (2002). Triacylglycerols, glycerophospholipids, tocopherols and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of Sea buckthorn (Hippophaë rhamnoides). Journal of Agricultural and Food Chemistry, 50, 3004–3009.CrossRefGoogle Scholar
  6. Katoch, P., Kaur, P., Singh, R., Vyas, M., Singh, S. K., & Gulati, M. (2016). Development and characterization of selfnanoemulsifying drug delivery system loaded with fixed oil of Semecarpus anacardium Linn. Asian Journal of Pharmaceutics, 10(2), 144–153.Google Scholar
  7. Khan, H. B. H., Vinayagam, K. S., Madan, P., Palanivelu, S., & Panchanatham, S. (2012). Modulatory effect of Semecarpus anacardium against oxidative damages in DMBA-induced mammary carcinogenesis rat model. Comparative Clinical Pathology, 21, 1275–1284. Scholar
  8. Nair, P. K. R., Melnick, S. J., Wnuk, S. F., Rapp, M., Escalon, E., & Ramachandran, C. (2009). Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium. Journal of Ethnopharmacology, 122, 450–456.CrossRefGoogle Scholar
  9. Parrota, J. A. (2001). Healing plants of peninsular India (pp. 391–392). Wallingford: CABI Publishing, CAB International.CrossRefGoogle Scholar
  10. Patwardan, B., Ghoo, R. B., & David, S. B. (1988). A new anaerobic inhibitor of herbal origin. Indian Journal Pharmacologic Sciences, 50, 130–132.Google Scholar
  11. Premalatha, B., & Sachdanandam, P. (2000). Potency of Semecarpus Anacardium Linn. nut milk extract against aflatoxin B1-induced hepatocarcinogenesis: Reflection on microsomal biotransformation enzymes. Pharmacological Research, 42, 161–166.CrossRefGoogle Scholar
  12. Premalatha, B., Muthulakshmi, V., & Sachdanandam, P. (1999). Anticancer potency of the milk extract of Semecarpus anacardium Linn. nuts against aflatoxin B1 mediated hepatocellular carcinoma bearing Wistar rats with reference to tumour marker enzymes. Phytotherapy Research, 13, 183–187.CrossRefGoogle Scholar
  13. Ramadan, M. F., & Mörsel, J.-T. (2003). Analysis of glycolipids from black cumin (Nigella sative L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) oilseeds. Food Chemistry, 80, 197–204.CrossRefGoogle Scholar
  14. Ramadan, M. F., Sharanabasappa, G., Seetharam, Y. N., Seshagiri, M., & Moersel, J.-T. (2006). Profile and levels of fatty acids and bioactive constituents in mahua butter from fruit-seeds of Buttercup tree [Madhuca longifolia (Koenig)]. European Food Research and Technology, 222, 710–718.CrossRefGoogle Scholar
  15. Ramadan, M. F., Zayed, R., & El-Shamy, H. (2007). Screening of bioactive lipids and radical scavenging potential of some solanaceae plants. Food Chemistry, 103, 885–890.CrossRefGoogle Scholar
  16. Ramadan, M. F., Kinni, S. G., Seshagiri, M., & Mörsel, J.-T. (2010). Fat-soluble bioactives, fatty acid profile and radical scavenging activity of Semecarpus anacardium seed oil. Journal of the American Oil Chemists’ Society, 87, 885–894.CrossRefGoogle Scholar
  17. Ramprasath, V. R., Shanthi, P., & Sachdanandam, P. (2006). Effect of Semecarpus anacardium Linn. nut milk extract on rat neutrophil functions in adjuvant arthritis. Cell Biochemistry and Function, 24, 333–340.CrossRefGoogle Scholar
  18. Rastogi, R. P., & Mehrotra, B. N. (1991). Compendium of Indian medicinal plants, Vol 2: Drug research perspective (p. 369). Lucknow: Central Drug Research Institute.Google Scholar
  19. Schuppan, D., Jia, J.-D., Brinkhaus, B., & Hahn, E. G. (1999). Herbal products for liver diseases: A therapeutic challenge for the new millennium. Hepatology, 30, 1099–1104.CrossRefGoogle Scholar
  20. Sokol, R. J. (1996). Vitamin E. In E. E. Ziegler & L. J. Filer (Eds.), Present knowledge in nutrition (pp. 130–116). Washington, DC: ILSI Press.Google Scholar
  21. Sugawara, T., & Miyazawa, T. (1999). Separation and determination of glycolipids from edible plant by high-performance liquid chromatography and evaporative light-scattering detection. Lipids, 34, 1231–1237.CrossRefGoogle Scholar
  22. Sujatha, V., & Sachdanandam, P. (2002). Recuperative effect of Semecarpus anacardium Linn. nut milk extract on carbohydrate metabolizing enzymes in experimental mammary carcinoma-bearing rats. Phytotherapy Research, 16, S14–S18.CrossRefGoogle Scholar
  23. Sunil Kumar, K. C., & Muller, K. (1999). Medicinal plants from Nepal; II. Evaluation as inhibitors of lipid peroxidation in biological membranes. Journal of Ethnopharmacology, 64, 135–139.CrossRefGoogle Scholar
  24. Surveswaran, S., Cai, Y.-Z., Corke, H., & Sun, M. (2007). Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chemistry, 102, 938–953.CrossRefGoogle Scholar
  25. Vijayalakshmi, T., Muthulakshmi, V., & Sachdanandam, P. (2000). Toxic studies on biochemical parameters carried out in rats with Serankottai nei, a siddha drug–milk extract of Semecarpus anacardium nut. Journal of Ethnopharmacology, 69, 9–15.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Agricultural Biochemistry Department, Faculty of AgricultureZagazig UniversityZagazigEgypt

Personalised recommendations