Apple (Malus pumila) Seed Oil

  • Ali Abbas
  • Farooq AnwarEmail author
  • Naveed Ahmad


Apple (Malus pumila) is one of the most common sweet fruits consumed by humans either directly in fresh or in processed form. Apple has an impressive range of medicinal benefits due to its rich level of high-value components and nutrients. Apple fruit contains a considerable amount of seeds, which are considered as agro-waste. The seeds contain appreciable content of oil, which is a good source of antioxidants (tocopherols) and other bioactive components. The apple seed oil is characterized by a high level of linoleic acid and oleic acid. The seed oil also contains different phytosterols with β-sitosterol as the most prevalent component. Because of acceptable physicochemical properties and nutrients composition, the apple seed oil has significant potential food and nutra-pharmaceutical for applications. This chapter describes the overall quality and biochemical composition and food applications of apple seed oil.


Rosaceae Fruit oil Linoleic acid β-sitosterol Tocopherols 


  1. Adebayo, S. E., Orhevba, B. A., Adeoye, P. A., Musa, J. J., & Fase, O. J. (2012). Solvent extraction and characterization of oil from African star apple (Chrysophyllum albidum) seeds. Academic Research International, 3(2), 178–183.Google Scholar
  2. Alexander-Lindo, R. L., Morrison, E. Y., & Nair, M. G. (2004). Hypoglycaemic effect of stigmast-4-en-and its corresponding alcohol from the of Anacardium occidentale (cashew). Phytotherapy Research, 18, 403–407.PubMedCrossRefGoogle Scholar
  3. Arain, S., Sherazi, S. T. H., Bhanger, M. I., Memon, N., Mahesar, S. A., & Rajput, M. T. (2012). Prospects of fatty acid profile and bioactive composition from lipid seeds for the discrimination of apple varieties with the application of chemometrics. Grasas y Aceites, 63(2), 175–183.CrossRefGoogle Scholar
  4. Bada, J. C., Leon-Camacho, M., Copovi, P., & Alonso, L. (2014). Characterization of apple seed oil with denomination of origin from Asturias, Spain. Grasas y Aceites, 65(2), e027. Scholar
  5. Beringer, H., & Dompert, W. U. (1976). Fatty acid and tocopherol pattern in oil seeds. Fette Seifen Anstrichm, 78, 228–231.CrossRefGoogle Scholar
  6. Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3(5), 1–15.Google Scholar
  7. Christiane, V. B., Joseph, V., Ingrid, W., & Frank, R. (1986). Phytol and peroxisome proliferation. Pediatric Research, 20, 411–415.CrossRefGoogle Scholar
  8. Dimick, P. S., & Hoskin, J. C. (1983). Review of apple flavor – state of the art. Critical Reviews in Food Science and Nutrition, 18, 387–409.PubMedCrossRefGoogle Scholar
  9. Dixon, J., & Hewett, E. W. (2000). Factors affecting apple aroma/flavour volatile concentration: A review. New Zealand Journal of Crop and Horticultural Science, 28, 155–173.CrossRefGoogle Scholar
  10. Elaine, M. A. (1975). A Unilever educational booklet. Information division, Unilever Limited. London, UK.Google Scholar
  11. Finley, J. W., & Shahidi, F. (2001). The chemistry, processing and health benefits of highly unsaturated fatty acids: an overview, Omega-3 fatty acids, chemistry, nutrition and health effects. American Chemical Society Washington, 1, 258–279.Google Scholar
  12. Fuhrmann, E., & Grosch, W. (2002). Character impact odorants of the apple cultivars Elstar and Cox Orange. Nahrung, 46, 187–193.PubMedCrossRefGoogle Scholar
  13. Gao, X., Qiu, N. X., Pang, F. K., & Liu, X. Y. (2007). Ultrasound-associated extraction of apple seed oil. Chinese Journal of Oil Crop Sciences, 29(1), 78.Google Scholar
  14. Górnaś, P., Rudzińska, M., & Segliņa, D. (2014). Lipophilic composition of eleven apple seed oils: A promising source of unconventional oil from industry by-products. Industrial Crops and Products, 60, 86–91.CrossRefGoogle Scholar
  15. Hamauzu, Y., Yasui, H., Inno, T., Kume, C., & Omanyuda, M. (2005). Phenolic profile, antioxidant property, and antiinfluenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. Journal of Agriculture and Food Chemistry, 53, 928–934.CrossRefGoogle Scholar
  16. He, X., & Liu, R. H. (2008). Phytochemicals of apple peels: Isolation, structure elucidation, and their antiproliferative and antioxidant activities. Journal of Agricultural and Food Chemistry, 56(21), 9905–9910.PubMedCrossRefGoogle Scholar
  17. Hensley, K., Benaksas, E. J., Bolli, R., Comp, P., Grammas, P., Hamdheydari, L., Mou, S., Pye, Q. N., Stoddard, M. F., Wallis, G., & Williamson, K. S. (2004). New perspectives on vitamin E: γ-tocopherol and carboxyethylhydroxychroman metabolites in biology and medicine. Free Radical Biology and Medicine, 36(1), 1–15.PubMedCrossRefGoogle Scholar
  18. Hern, A., & Dorn, S. (2003). Monitoring seasonal variation in apple fruit volatile emissions in situ using solid- phase microextraction. Phytochemical Analysis, 14, 232–240.PubMedCrossRefGoogle Scholar
  19. Herrera, E., & Barbas, C. (2001). Vitamin E: Action, metabolism and perspectives. Journal of Physiology and Biochemistry, 57, 43–56.PubMedCrossRefGoogle Scholar
  20. Hibasami, H., Kyohkon, M., Ohwaki, S., Katsuzaki, H., Imai, K., Ohnishi, K., Ina, K., & Komiya, T. (2002). Diol- and triol-types of phytol induce apoptosis in lymphoid leukemia Molt 4B cells. International Journal of Molecular Medicine, 10, 555–559.PubMedGoogle Scholar
  21. Hulme, A. C. (1970). The biochemistry of fruits and their products. Academic Press London and New York, 1, 376–377.Google Scholar
  22. Ibemesi, J. A. (1992). Vegetable oils as industrial raw materials. The Nigerian Perspective (A Monograph). Enugu: SNAAP Press.Google Scholar
  23. Jiang, Q., Elson-Schwab, I., Courtemanche, C., & Ames, B. N. (2000). γ-Tocopherol and its major metabolite, in contrast to α-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proceedings of the National Academy of Sciences, 97, 11494–11499.CrossRefGoogle Scholar
  24. Jiang, Q., Lykkesfeldt, J., Shigenaga, M. K., Shigeno, E. T., Christen, S., & Ames, B. N. (2002). γ-Tocopherol supplementation inhibits protein nitration and ascorbate oxidation in rats with inflammation. Free Radical Biology and Medicine, 33, 1534–1542.PubMedCrossRefGoogle Scholar
  25. Kamal-Eldin, A., & Andersson, R. A. (1997). A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. Journal of the American Oil Chemists’ Society, 74, 375–380.CrossRefGoogle Scholar
  26. Kamisak, W., Honda, C., Suwa, K., & Isoi, K. (1987). Studies of 13C NMR spectra of 13C-enriched cycloartenol biosynthesized from [1-13C]-,[2-13C]-and [1, 2-13C2]-acetate. Revised 13C NMR spectral assignments of cycloartenol and cycloartanol and 13C NMR spectral support for the generally accepted skeleton formation mechanism of cycloartenol. Magnetic Resonance in Chemistry, 25(8), 683–687.CrossRefGoogle Scholar
  27. Kelly, G. S. (1999). Squalene and its potential clinical uses. Alternative Medicine Review: A Journal of Clinical Therapeutic, 4, 29–36.Google Scholar
  28. Kohno, Y., Egawa, Y., Itoh, S., Nagaoka, S., Takahashi, M., & Mukai, K. (1995). Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1256, 52–56.CrossRefGoogle Scholar
  29. Kris-Etherton, P. M., & Etherton, T. D. (2003). The impact of the changing fatty acid profile on fats on the diet assessment and health. Journal of Food Composition and Analysis, 16, 373–378.CrossRefGoogle Scholar
  30. Lanzón, A., Albi, T., Cert, A., & Gracian, J. (1994). The hydrocarbon fraction of virgin olive oil and changes resulting from refining. Journal of the American Oil Chemists’ Society, 71, 285–291.CrossRefGoogle Scholar
  31. Lei-Tian, H., Zhan, P., & Li, K. X. (2010). Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds. International Journal of Food Science and Nutrition, 61, 395–403.CrossRefGoogle Scholar
  32. Liu, R. H., Liu, J., & Chen, B. (2005). Apples prevent mammary tumors in rats. Journal of Agriculture and Food Chemistry, 53, 2341–2343.CrossRefGoogle Scholar
  33. Manzoor, M., Anwar, F., Saari, N., & Ashraf, M. (2012). Variations of antioxidant characteristics and mineral contents in pulp and peel of different apple (Malus domestica Borkh.) cultivars. Molecules, 17, 390–407.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Marjan, S., Melita, K., Janez, H., & Rajko, V. (2007). Influence of cultivar and storage time on the content of higher fatty acids. Vegetable Crops Research Bulletin, 66, 197–203.Google Scholar
  35. Matthäus, B., & Özcan, M. (2015). Oil content, fatty acid composition and distributions of vitamin-E-active compounds of some fruit seed oils. Antioxidants, 4(1), 124–133.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Minnocci, A., Iacopini, P., Martinelli, F., & Sebastiani, L. (2010). Micromorphological, biochemical, and genetic characterization of two ancient, late-bearing apple varieties. Journal of Horticulture Science, 75, 1–7.Google Scholar
  37. Nieuwenhuizen, N. J., Green, S. A., Chen, X., Bailleul, E. J., Matich, A. J., Wang, M. Y., & Atkinson, R. G. (2013). Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiology, 161(2), 787–804.PubMedCrossRefGoogle Scholar
  38. Oleszek, W., Lee, C. Y., Jaworski, A. W., & Price, K. R. (1988). Identification of some phenolic compounds in apples. Journal of Agricultural and Food Chemistry, 36(3), 430–432.CrossRefGoogle Scholar
  39. Pearson, D. A., Tan, C. H., German, J. B., Davis, P. A., & Gershwin, M. E. (1999). Apple juice inhibits human low density lipoprotein oxidation. Life Sciences, 64, 1913–1920.PubMedCrossRefGoogle Scholar
  40. Rapparini, F., Baraldi, R., & Facini, O. (2001). Seasonal variation of monoterpene emission from Malus domestica and Prunus avium. Phytochemistry, 57(5), 681–687.PubMedCrossRefGoogle Scholar
  41. Rohrer, J. R., Robertson, K. R., & Phipps, J. B. (1994). Floral morphology of Maloideae (Rosaceae) and its systematic relevance. American Journal of Botany, 81(5), 574–581.CrossRefGoogle Scholar
  42. Rowan, D. D., Hunt, M. B., Alspach, P. A., Whitworth, C. J., & Oraguzie, N. C. (2009). Heritability and genetic and phenotypic correlations of apple (Malus x domestica) fruit volatiles in a genetically diverse breeding population. Journal of Agricultural and Food Chemistry, 57(17), 7944–7952.PubMedCrossRefGoogle Scholar
  43. Stephens, N. G., Parsons, A., Brown, M. J., Schofield, P. M., Kelly, F., Cheeseman, K., & Mitchinson, M. J. (1996). Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). The Lancet, 347(9004), 781–786.CrossRefGoogle Scholar
  44. Stone, N. J., & Kushner, R. (2000). Effects of dietary modification and treatment of obesity: Emphasis on improving vascular outcomes. Medical Clinics of North America, 84(1), 95–122.PubMedCrossRefGoogle Scholar
  45. Tareen, M. J., Tareen, A. Q., Kamal, J. A. Sıddıquın, B. N. (2003). Influence of MM-106 and M-9 root stocks on Starking delicious apple. Internatıonal Journal of Agriculture & Biology, 5(3), 339–340.Google Scholar
  46. Traber, M. G., & Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43(1), 4–15.PubMedCrossRefGoogle Scholar
  47. Vallat, A., Gu, H., & Dorn, S. (2005). How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry, 66(13), 1540–1550.PubMedCrossRefGoogle Scholar
  48. Velasco, J., & Dobarganes, C. (2002). Oxidative stability of virgin olive oil. European Journal of Lipid Science and Technology, 104(9–10), 661–676.CrossRefGoogle Scholar
  49. Vivancos, M., & Moreno, J. J. (2005). β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radical Biology and Medicine, 39(1), 91–97.PubMedCrossRefGoogle Scholar
  50. Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry, 51(3), 609–614.PubMedCrossRefGoogle Scholar
  51. Yu, X., van de Voort, F. R., Li, Z., & Yue, T. (2007). Proximate composition of the apple seed and characterization of its oil. International Journal of Food Engineering, 3(5), 1–8.CrossRefGoogle Scholar
  52. Yukui, R., Wenya, W., Rashid, F., & Qing, L. (2009). Fatty acids composition of apple and pear seed oils. International Journal of Food Properties, 12(4), 774–779.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryGovernment Postgraduate Taleem-ul-Islam CollegeChenab Nagar, ChiniotPakistan
  2. 2.Department of ChemistryUniversity of SargodhaSargodhaPakistan
  3. 3.Department of ChemistryUniversity of EducationFaisalabadPakistan

Personalised recommendations