Madhuca longifolia Butter

  • Mohamed Fawzy Ramadan
  • Jörg-Thomas Mörsel


Sustainable oil and fat sources are desired to achieve supply chain flexibility and cost-saving opportunities. Non-conventional fruits are considered because of their constituents unique chemical composition that may augment the supply of nutritional and functional products. Madhuca longifolia Syn. M. indica (family Sapotaceae) is an important economic tree growing throughout the subtropical region of the Indo-Pak. Information concerning the exact composition of mahua (known also as mowrah) butter from fruit-seeds of buttercup or Madhuca tree is still few. Few studies investigated mahua butter for its composition, nutritional value, biological activities and antioxidant traits. This chapter summarizes recent knowledge on bioactive compounds, functional traits as well as food and non-food industrial applications of mahua butter.


Sapotaceae Mahua butter Mowrah butter Buttercup tree Biofuel 


  1. Azam, M. M., Amtul, W., & Nahar, N. M. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy, 29, 293–302.CrossRefGoogle Scholar
  2. Campos, R., Narine, S. S., & Marangoni, A. G. (2002). Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Research International, 35, 971–981.CrossRefGoogle Scholar
  3. Carlos, M., Moure, A., Giraldo, M., Carrillo, E., Domınguez, H., & Parajo, J. C. (2010). Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy, 34, 533–538.CrossRefGoogle Scholar
  4. Ghadge, S. V., & Raheman, H. (2005). Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy, 28, 601–605.CrossRefGoogle Scholar
  5. Ghadge, S. V., & Raheman, H. (2006). Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresource Technology, 97, 379–384.CrossRefGoogle Scholar
  6. Gupta, A., Chaudhary, R., & Sharma, S. (2012). Potential applications of mahua (Madhuca indica) biomass. Waste and Biomass Valorization, 3, 175–189.CrossRefGoogle Scholar
  7. Gupta, A., Kumar, A., Sharma, S., & Vijay, V. K. (2013). Comparative evaluation of raw and detoxified mahua seed cake for biogas production. Applied Energy, 102, 1514–1521.CrossRefGoogle Scholar
  8. Inamdar, A. I., Chaudhary, L. C., Agarwal, N., & Kamra, D. N. (2015). Effect of Madhuca longifolia and Terminalia chebula on methane production and nutrient utilization in buffaloes. Animal Feed Science and Technology, 201, 38–45.CrossRefGoogle Scholar
  9. Jeyarani, T., & Yella Reddy, S. (2010). Effect of enzymatic interesterification on physicochemical properties of mahua oil and kokum fat blend. Food Chemistry, 123, 249–253.CrossRefGoogle Scholar
  10. Jha, D., & Mazumder, P. M. (2018). Biological, chemical and pharmacological aspects of Madhuca longifolia. Asian Pacific Journal of Tropical Medicine, 11(1), 9–14.CrossRefGoogle Scholar
  11. Kallio, H., Yang, B., Peippo, P., Tahvonen, R., & Pan, R. (2002). Triacylglycerols, glycerophospholipids, tocopherols and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and Mongolia) of sea buckthorn (Hippophaë rhamnoides). Journal of Agricultural and Food Chemistry, 50, 3004–3009.CrossRefGoogle Scholar
  12. Kapilan, N., & Reddy, R. P. (2008). Evaluation of methyl esters of mahua oil (Mahua indica) as diesel fuel. JAOCS, 85, 185–188.CrossRefGoogle Scholar
  13. Khatoon, S., & Reddy, S. R. Y. (2005). Plastic fats with zero trans fatty acids by interesterification of mango, mahua and palm oils. European Journal of Lipid Science and Technology, 107, 786–791.CrossRefGoogle Scholar
  14. Lawson, H. (1995). Sources of oils and fats. In H. Lawson (Ed.), Food oils and fats, technology, utilization and nutrition (pp. 39–48). USA: Chapman & Hall.CrossRefGoogle Scholar
  15. Lipp, M., & Ankalam, E. (1998). Review of cocoa butter and alternative fats for use in chocolate-Part A. Compositional data. Food Chemistry, 62, 73–97.CrossRefGoogle Scholar
  16. Manjunath, H., Omprakash Hebbal, B., & Hemachandra Reddy, K. (2015). Process optimization for biodiesel production from Simarouba, Mahua, and waste cooking oils. International Journal of Green Energy, 12, 424–430.CrossRefGoogle Scholar
  17. Marikkar, J. M. N., Ghazali, H. M., & Long, K. (2010). Composition and thermal characteristics of Madhuca longifolia seed fat and its solid and liquid fractions. Journal of Oleo Science, 59, 7–14.CrossRefGoogle Scholar
  18. Parrota, J. A. (2001). Healing plants of peninsular India (pp. 655–657). UK: CABI Publishing, Wallingford.Google Scholar
  19. Puhan, S., Vedaraman, N., Ram, B. V. B., Sankarnarayanan, G., & Jeychandran, K. (2005). Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characteristics. Biomass and Bioenergy, 28, 87–93.CrossRefGoogle Scholar
  20. Ramadan, M. F., & Moersel, J.-T. (2006). Mowrah butter: Nature’s novel fat. Information, 17, 124–126.Google Scholar
  21. Ramadan, M. F., Kroh, L. W., & Moersel, J. T. (2003). Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. Journal of Agricultural and Food Chemistry, 51, 6961–6969.CrossRefGoogle Scholar
  22. Ramadan, M. F., Sharanabasappa, G., Parmjyothi, S., Seshagri, M., & Moersel, J.-T. (2006). Profile and levels of fatty acids and bioactive constituents in mahua butter from fruit seeds of butter cup tree (Madhca longifolia). European Food Research and Technology, 222, 710–718.CrossRefGoogle Scholar
  23. Ramadan, M. F., Mohdaly, A. A. A., Assiri, A. M. A., Tadros, M., & Niemeyer, B. (2016). Functional characteristics, nutritional value and industrial applications of Madhuca longifolia seeds: An overview. Journal of Food Science and Technology, 53, 2149–2157.CrossRefGoogle Scholar
  24. Singh, A., & Singh, I. S. (1991). Chemical evaluation of mahua (Madhuca indica) seed. Food Chemistry, 40, 221–228.CrossRefGoogle Scholar
  25. Singh, D., Singh, M., Yadav, E., Falls, N., Komal, U., Dangi, D. S., Kumar, V., & Verma, A. (2018). Amelioration of diethylnitrosamine (DEN)-induced hepatocellular carcinogenesis in animal models via knockdown oxidative stress and proinflammatory markers by Madhuca longifolia embedded silver nanoparticles. RSC Advances, 8, 6940.CrossRefGoogle Scholar
  26. Wong, S. (1988). The chocolate fat from the Borneo Illipe trees. Malaysia: Vivar Printing Sdn Bhd, Pahang.Google Scholar
  27. Yadav, S., Suneja, P., Hussain, Z., Abraham, Z., & Mishra, S. K. (2011a). Prospects and potential of Madhuca longifolia (Koenig) J.F. Macbride for nutritional and industrial purpose. Biomass and Bioenergy, 35, 1539–1544.CrossRefGoogle Scholar
  28. Yadav, S., Suneja, P., Hussain, Z., Abraham, Z., & Mishra, S. K. (2011b). Genetic variability and divergence studies in seed and oil parameters of mahua (Madhuca longifolia Koenig) J.F. Macribide accessions. Biomass and Bioenergy, 35, 1773–1778.CrossRefGoogle Scholar
  29. Yadav, P., Singh, D., Mallik, A., & Nayak, S. (2012). Madhuca lonigfolia (sapotaceae): A review of its traditional uses, phytochemistry and pharmacology. International Journal of Biomedical Research, 3, 291–305.CrossRefGoogle Scholar
  30. Yang, B., Karlsson, R. M., Oksman, P. H., & Kallio, H. P. (2001). Phytosterols in sea buckthorn (Hippophaë rhamnoides L.) berries: Identification and effects of different origins and harvesting times. Journal of Agricultural and Food Chemistry, 49, 5620–5629.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Fawzy Ramadan
    • 1
  • Jörg-Thomas Mörsel
    • 2
  1. 1.Agricultural Biochemistry Department, Faculty of AgricultureZagazig UniversityZagazigEgypt
  2. 2.UBF-Untersuchungs-, Beratungs-, Forschungslaboratorium GmbHAltlandsberg, BerlinGermany

Personalised recommendations