Nanoparticle-Based Diamond Electrodes

  • Mailis M. Lounasvuori
  • Geoffrey W. NelsonEmail author
  • John S. FoordEmail author
Part of the Topics in Applied Physics book series (TAP, volume 121)


This chapter reviews the construction, modification, and physical characteristics of two types of diamond electrodes: nanoparticle-modified diamond electrodes (NMDE) and detonation nanodiamond-based electrodes (DNDE). These particular types of diamond electrodes show great promise for improving the performance of diamond electrodes via the incorporation of nano-scale chemistry at their surfaces. The construction of both types of electrodes is reviewed, along with the resultant physical and electronic effects. The methods reviewed here are particularly applicable for electroanalytical and electrocatalytic applications of nanoparticle-based diamond electrodes. A brief review of progress on the interactions between metals and diamond at nanoparticle-based electrodes is also included. Finally, an outline of the present state-of-the art research in this field is presented.


Diamond electrodes Nanoparticles Detonation nanodiamond Electroanalysis Electrocatalysis 


  1. 1.
    R.G. Compton, J.S. Foord, F. Marken, Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15(17), 1349–1363 (2003). Scholar
  2. 2.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009). Scholar
  3. 3.
    S. Fierro, Y. Einaga, Advances in electrochemical biosensing using boron doped diamond microelectrode, in Novel Aspects of Diamond: From Growth to Applications, vol. 121, ed. by N. Yang (Springer, Berlin, 2015), pp. 295–318Google Scholar
  4. 4.
    X.F. Chen, W.J. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46(3), 734–760 (2017). Scholar
  5. 5.
    T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Electroanalytical application of modified diamond electrodes. Diam. Relat. Mater. 13(11), 2003–2008 (2004). Scholar
  6. 6.
    N. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a review. Carbon 99(Supplement C), 90–110 (2016). DOI:
  7. 7.
    J. Radjenovic, D.L. Sedlak, Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49(19), 11292–11302 (2015). Scholar
  8. 8.
    H. Sarkka, A. Bhatnagar, M. Sillanpaa, Recent developments of electro-oxidation in water treatment—A review. J. Electroanal. Chem. 754, 46–56 (2015). Scholar
  9. 9.
    P.R.F. da Costa, E.V. dos Santos, J.M. Peralta-Hernandez, G.R. Salazar-Banda, D.R. da Silva, C.A. Martinez-Huitle, modified diamond electrodes for electrochemical systems for energy conversion and storage, in Novel Aspects of Diamond: From Growth to Applications, vol. 121, ed. by N. Yang (Springer, Berlin, 2015), pp. 205–235Google Scholar
  10. 10.
    K.B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 365(1861), 2845–2861 (2007). Scholar
  11. 11.
    J. Wolters, G. Kewes, A.W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, O. Benson, Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities. Physica Status Solidi (b) 249(5), 918–24 (2012).
  12. 12.
    R.B. Liu, W. Yao, L.J. Sham, Quantum computing by optical control of electron spins. Adv. Phys. 59(5), 703–802 (2010). Scholar
  13. 13.
    X. Rong, D.W. Lu, X. Kong, J.P. Geng, Y. Wang, F.Z. Shi, C.K. Duan, J.F. Du, Harnessing the power of quantum systems based on spin magnetic resonance: from ensembles to single spins. Adv. Phys. 2(1), 125–68 (2017).
  14. 14.
    V.Y. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 70(7), 607 (2001). Scholar
  15. 15.
    K.I.B. Eguiluz, J.M. Peralta-Hernández, A. Hernández-Ramírez, J.L. Guzmán-Mar, L. Hinojosa-Reyes, C.A. Martínez-Huitle, G.R. Salazar-Banda, The use of diamond for energy conversion system applications: a review. Int. J. Electrochem. 2012, 20 (2012). Scholar
  16. 16.
    A. Kraft, Conductive diamond layers. Production, properties, and possible uses of new electrode materials. Jahrb. Oberflaechentech. 61, 109–20 (2005)Google Scholar
  17. 17.
    H. Yuen Yung, C. Chia-Liang, C. Huan-Cheng, Nanodiamonds for optical bioimaging. J. Phys. D Appl. Phys. 43(37), 374021 (2010). Scholar
  18. 18.
    J. Zang, L. Dong, Y.-H. Wang, Review on electrochemical property and surface modifications of nanodiamond powders. Yanshan da xue xue bao 2, 002 (2012)Google Scholar
  19. 19.
    N. Fujimori, T. Imai, A. Doi, Characterization of conducting diamond films. Vacuum 36(1), 99–102 (1986). Scholar
  20. 20.
    K.E. Toghill, R.G. Compton, Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis. Electroanalysis 22(17–18), 1947–1956 (2010). Scholar
  21. 21.
    A. Kraft, Doped diamond electrodes. New trends and developments. Jahrb. Oberflaechentech. 63, 85–95 (2007)Google Scholar
  22. 22.
    I. Novoselova, E. Fedorishena, E. Panov, Electrodes from diamond and diamond-like materials for electrochemical applications. J. Superhard Mater. 29(1), 24–39 (2007). Scholar
  23. 23.
    Y. Zhou, J. Zhi, The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5), 1189–1196 (2009). Scholar
  24. 24.
    D. Yamada, T.A. Ivandini, M. Komatsu, A. Fujishima, Y. Einaga, Anodic stripping voltammetry of inorganic species of as 3 + and as 5 + at gold-modified boron doped diamond electrodes. J. Electroanal. Chem. 615(2), 145–153 (2008). Scholar
  25. 25.
    L.A. Hutton, M. Vidotti, A.N. Patel, M.E. Newton, P.R. Unwin, J.V. Macpherson, Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J. Phys. Chem. 115(5), 1649–1658 (2010). Scholar
  26. 26.
    G.R. Salazar-Banda, K.I. Eguiluz, L.A. Avaca, Boron-doped diamond powder as catalyst support for fuel cell applications. Electrochem. Commun. 9(1), 59–64 (2007). Scholar
  27. 27.
    L. Bian, Y. Wang, J. Zang, F. Meng, Y. Zhao, Detonation-synthesized nanodiamond as a stable support of Pt electrocatalyst for methanol electrooxidation. Int. J. Electrochem. Sci. 7(8), 7295–303 (2012)Google Scholar
  28. 28.
    S. Szunerits, R. Boukherroub, Investigation of the electrocatalytic activity of boron-doped diamond electrodes modified with palladium or gold nanoparticles for oxygen reduction reaction in basic medium. C. R. Chim. 11(9), 1004–1009 (2008). Scholar
  29. 29.
    S.R. Belding, F.W. Campbell, E.J. Dickinson, R.G. Compton, Nanoparticle-modified electrodes. Phys. Chem. Chem. Phys. 12(37), 11208–11221 (2010). Scholar
  30. 30.
    K.B. Holt, C. Ziegler, D.J. Caruana, J. Zang, E.J. Millán-Barrios, J. Hu, J.S. Foord, Redox properties of undoped 5 nm diamond nanoparticles. Phys. Chem. Chem. Phys. 10(2), 303–310 (2008). Scholar
  31. 31.
    J.-S. Gao, T. Arunagiri, J.-J. Chen, P. Goodwill, O. Chyan, J. Perez, D. Golden, Preparation and characterization of metal nanoparticles on a diamond surface. Chem. Mater. 12(11), 3495–3500 (2000). Scholar
  32. 32.
    F. Gao, N. Yang, W. Smirnov, H. Obloh, C.E. Nebel, Size-controllable and homogeneous platinum nanoparticles on diamond using wet chemically assisted electrodeposition. Electrochim. Acta 90, 445–451 (2013). Scholar
  33. 33.
    J. Hu, X. Lu, J.S. Foord, Q. Wang, Electrochemical deposition of Pt nanoparticles on diamond substrates. Physica Status Solidi (a) 206(9), 2057–62 (2009).
  34. 34.
    F. Montilla, E. Morallon, I. Duo, C. Comninellis, J. Vazquez, Platinum particles deposited on synthetic boron-doped diamond surfaces. Appl. Methanol Oxid. Electrochim. Acta 48(25), 3891–3897 (2003). Scholar
  35. 35.
    G. Sine, I. Duo, B.E. Roustom, G. Foti, C. Comninellis, Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis. J. Appl. Electrochem. 36(8), 847–862 (2006). Scholar
  36. 36.
    O. Enea, B. Riedo, G. Dietler, AFM study of Pt clusters electrochemically deposited onto boron-doped diamond films. Nano Lett. 2(3), 241–244 (2002). Scholar
  37. 37.
    I. Gonzalez-Gonzalez, D. Tryk, C.R. Cabrera, Polycrystalline boron-doped diamond films as supports for methanol oxidation electrocatalysts. Diam. Relat. Mater. 15(2), 275–278 (2006). Scholar
  38. 38.
    S. Hrapovic, Y. Liu, J.H. Luong, Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite. Anal. Chem. 79(2), 500–507 (2007). Scholar
  39. 39.
    B. Rismetov, T.A. Ivandini, E. Saepudin, Y. Einaga, Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diam. Relat. Mater. 48(Supplement C), 88–95 (2014).
  40. 40.
    Y. Hernández-Lebrón, C.R. Cabrera, Square wave voltammetry restructuring of platinum nanoparticle at boron doped diamond electrode for enhanced ammonia oxidation. J. Electroanal. Chem. 793(Supplement C), 174–83 (2017). DOI:
  41. 41.
    Y. Hernández-Lebrón, L. Cunci, C.R. Cabrera, Ammonia oxidation at electrochemically platinum-modified microcrystalline and polycrystalline boron-doped diamond electrodes. Electrocatalysis 7(2), 184–192 (2016). Scholar
  42. 42.
    L. Hutton, M.E. Newton, P.R. Unwin, J.V. Macpherson, Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode. Anal. Chem. 81(3), 1023–1032 (2008). Scholar
  43. 43.
    L.C.S. Figueiredo-Filho, E.R. Sartori, O. Fatibello-Filho, Electroanalytical determination of the linuron herbicide using a cathodically pretreated boron-doped diamond electrode: comparison with a boron-doped diamond electrode modified with platinum nanoparticles. Anal. Methods 7(2), 643–649 (2015). Scholar
  44. 44.
    A.I. Căciuleanu, T. Spătaru, L. Preda, M. Anastasescu, P. Osiceanu, C. Munteanu, R.D. Bărăţoiu, A.A. Iovescu, N. Spătaru, Platinum–carbon electrocatalytic composites via liposome-directed electrodeposition at conductive diamond. Int. J. Hydrog. Energy 41(47), 22529–22537 (2016). Scholar
  45. 45.
    M. Medina-Sánchez, C.C. Mayorga-Martinez, T. Watanabe, T.A. Ivandini, Y. Honda, F. Pino, K. Nakata, A. Fujishima, Y. Einaga, A. Merkoçi, Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens. Bioelectron. 75, 365–374 (2016). Scholar
  46. 46.
    G. Siné, D. Smida, M. Limat, G. Foti, C. Comninellis, Microemulsion synthesized pt∕ru∕sn nanoparticles on bdd for alcohol electro-oxidation. J. Electrochem. Soc. 154(2), B170–B174 (2007). Scholar
  47. 47.
    T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide. Diam. Relat. Mater. 14(11), 2133–2138 (2005). Scholar
  48. 48.
    T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Electrochemical detection of arsenic (III) using iridium-implanted boron-doped diamond electrodes. Anal. Chem. 78(18), 6291–6298 (2006). Scholar
  49. 49.
    K. Panda, K.J. Sankaran, E. Inami, Y. Sugimoto, N.H. Tai, I.-N. Lin, Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films. Appl. Phys. Lett. 105(16), 163109 (2014). Scholar
  50. 50.
    K.J. Sankaran, P. Kalpataru, S. Balakrishnan, N.-H. Tai, I.N. Lin, Catalytically induced nanographitic phase by a platinum-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films. J. Mater. Chem. C 3(11), 2632–2641 (2015). Scholar
  51. 51.
    K. Panda, E. Inami, Y. Sugimoto, K.J. Sankaran, I.N. Lin, Straight imaging and mechanism behind grain boundary electron emission in Pt-doped ultrananocrystalline diamond films. Carbon 111(Supplement C), 8–17 (2017).
  52. 52.
    D.K. Belghiti, M. Zadeh-Habchi, E. Scorsone, P. Bergonzo, Boron doped diamond/metal nanoparticle catalysts hybrid electrode array for the detection of pesticides in tap water, in Proceedings of the 30th Anniversary Eurosensors Conference—Eurosensors, vol. 168, ed. by I. Barsony, Z. Zolnai, G. Battistig (Elsevier Science Bv, Amsterdam, 2016), pp. 428–31Google Scholar
  53. 53.
    X. Lyu, J.P. Hu, J.S. Foord, C.S. Lou, W.Q. Zhang, Synthesis and electrocatalytic performance of BDD-Supported platinum nanoparticles. J. Mater. Eng. Perform. 24(2), 1031–1037 (2015). Scholar
  54. 54.
    J. Wang, G.M. Swain, Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis preliminary studies of the oxygen-reduction reaction. J. Electrochem. Soc. 150(1), E24–E32 (2003). Scholar
  55. 55.
    Bennett, J. A.; Show, Y.; Wang, S.; Swain, G. M., Pulsed galvanostatic deposition of Pt particles on microcrystalline and nanocrystalline diamond thin-film electrodes I. Characterization of as-deposited metal/diamond surfaces. J. Electrochem. Soc. 152(5), E184–E92 (2005).
  56. 56.
    G. Salazar-Banda, H. Suffredini, L. Avaca, Improved stability of PtOx sol-gel-modified diamond electrodes covered with a Nafion® film. J. Braz. Chem. Soc. 16(5), 903–906 (2005). Scholar
  57. 57.
    H.B. Suffredini, G.R. Salazar-Banda, S.T. Tanimoto, M.L. Calegaro, S.A. Machado, L.A. Avaca, AFM studies and electrochemical characterization of boron-doped diamond surfaces modified with metal oxides by the Sol-Gel method. J. Braz. Chem. Soc. 17(2), 257–264 (2006). Scholar
  58. 58.
    G.R. Salazar-Banda, H.B. Suffredini, L.A. Avaca, S.A.S. Machado, Methanol and ethanol electro-oxidation on Pt–SnO2 and Pt–Ta2O5 sol-gel-modified boron-doped diamond surfaces. Mater. Chem. Phys. 117(2–3), 434–442 (2009). Scholar
  59. 59.
    F. Gao, R. Thomann, C.E. Nebel, Aligned Pt-diamond core-shell nanowires for electrochemical catalysis. Electrochem. Commun. 50, 32–35 (2015). Scholar
  60. 60.
    J. Kim, Y.S. Chun, S.K. Lee, D.S. Lim, Improved electrode durability using a boron-doped diamond catalyst support for proton exchange membrane fuel cells. RSC Adv. 5(2), 1103–1108 (2015). Scholar
  61. 61.
    K.E. Toghill, L. Xiao, G.G. Wildgoose, R.G. Compton, Electroanalytical determination of cadmium (II) and lead (II) using an antimony nanoparticle modified boron-doped diamond electrode. Electroanalysis 21(10), 1113–1118 (2009). Scholar
  62. 62.
    C.W. Foster, A.P. de Souza, J.P. Metters, M. Bertotti, C.E. Banks, Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. Analyst 140(22), 7598–7612 (2015). Scholar
  63. 63.
    K.E. Toghill, G.G. Wildgoose, A. Moshar, C. Mulcahy, R.G. Compton, The fabrication and characterization of a bismuth nanoparticle modified boron doped diamond electrode and its application to the simultaneous determination of cadmium (II) and lead (II). Electroanalysis 20(16), 1731–1737 (2008). Scholar
  64. 64.
    A.O. Simm, X. Ji, C.E. Banks, M.E. Hyde, R.G. Compton, AFM studies of metal deposition: instantaneous nucleation and the growth of cobalt nanoparticles on boron-doped diamond electrodes. ChemPhysChem 7(3), 704–709 (2006). Scholar
  65. 65.
    T.-L. Wee, B.D. Sherman, D. Gust, A.L. Moore, T.A. Moore, Y. Liu, J.C. Scaiano, Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 133(42), 16742–16745 (2011). Scholar
  66. 66.
    N.R. Stradiotto, K.E. Toghill, L. Xiao, A. Moshar, R.G. Compton, The fabrication and characterization of a nickel nanoparticle modified boron doped diamond electrode for electrocatalysis of primary alcohol oxidation. Electroanalysis 21(24), 2627–2633 (2009). Scholar
  67. 67.
    S. Treetepvijit, A. Preechaworapun, N. Praphairaksit, S. Chuanuwatanakul, Y. Einaga, O. Chailapakul, Use of nickel implanted boron-doped diamond thin film electrode coupled to HPLC system for the determination of tetracyclines. Talanta 68(4), 1329–1335 (2006). Scholar
  68. 68.
    V. Sáez, J. González-García, F. Marken, Active catalysts of sonoelectrochemically prepared iron metal nanoparticles for the electroreduction of chloroacetates. Phys. Procedia 3(1), 105–109 (2010). Scholar
  69. 69.
    L.A. Hutton, M.E. Newton, P.R. Unwin, J.V. Macpherson, Factors controlling stripping voltammetry of lead at polycrystalline boron doped diamond electrodes: new insights from high-resolution microscopy. Anal. Chem. 83(3), 735–745 (2011). Scholar
  70. 70.
    L.Y. Jiang, J.P. Hu, J.S. Foord, Electroanalysis of hydrogen peroxide at boron doped diamond electrode modified by silver nanoparticles and haemoglobin. Electrochim. Acta 176, 488–496 (2015). Scholar
  71. 71.
    S. Nantaphol, O. Chailapakul, W. Siangproh, A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection. Anal. Chim. Acta 891, 136–143 (2015). Scholar
  72. 72.
    N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K.I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, C. Terashima, Boron-doped diamond semiconductor electrodes: efficient photoelectrochemical CO2 reduction through surface modification. Sci. Rep. 6, 9 (2016). Scholar
  73. 73.
    C.M. Welch, C.E. Banks, G. Richard, The detection of nitrate using in-situ copper nanoparticle deposition at a boron doped diamond electrode. Anal. Sci. 21(12), 1421–30 (2005).
  74. 74.
    C.K. Mavrokefalos, G.W. Nelson, C.G. Poll, R.G. Compton, J.S. Foord, Electrochemical aspects of Pt–Cu and Cu modified boron-doped diamond. Physica Status Solidi A-Appl. Mat. 212(11), 2559–2567 (2015). Scholar
  75. 75.
    K.R. Saravanan, M. Chandrasekaran, V. Suryanarayanan, Efficient electrocarboxylation of benzophenone on silver nanoparticles deposited boron doped diamond electrode. J. Electroanal. Chem. 757, 18–22 (2015). Scholar
  76. 76.
    H.S. Panglipur, T.A. Ivandini, R. Wibowo, Y. Einaga, Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD). AIP Conf. Proc. 1729(1), 020047 (2016). Scholar
  77. 77.
    N. Roy, Y. Shibano, C. Terashima, K. Katsumata, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, Ionic-liquid-assisted selective and controlled electrochemical CO2 reduction at Cu-modified boron-doped diamond electrode. ChemElectroChem 3(7), 1044–1047 (2016). Scholar
  78. 78.
    C.M. Welch, A.O. Simm, R.G. Compton, Oxidation of electrodeposited copper on boron doped diamond in acidic solution: manipulating the size of copper nanoparticles using voltammetry. Electroanalysis 18(10), 965–970 (2006). Scholar
  79. 79.
    B. El Roustom, G. Fóti, C. Comninellis, Preparation of gold nanoparticles by heat treatment of sputter deposited gold on boron-doped diamond film electrode. Electrochem. Commun. 7(4), 398–405 (2005). Scholar
  80. 80.
    I. Yagi, T. Ishida, K. Uosaki, Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochem. Commun. 6(8), 773–779 (2004). Scholar
  81. 81.
    Y. Ma, J. Liu, H. Li, Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A. Biosens. Bioelectron. 92(Supplement C), 21–5 (2017).
  82. 82.
    M. Li, G. Zhao, R. Geng, H. Hu, Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface. Bioelectrochemistry 74(1), 217–221 (2008). Scholar
  83. 83.
    R.-H. Tian, T.N. Rao, Y. Einaga, J.-F. Zhi, Construction of two-dimensional arrays gold nanoparticles monolayer onto boron-doped diamond electrode surfaces. Chem. Mater. 18(4), 939–945 (2006). Scholar
  84. 84.
    T.A. Ivandini, Harmesa, E. Saepudin, Y. Einaga, Yeast-based biochemical oxygen demand sensors using Gold-modified boron-doped diamond electrodes. Anal. Sci. 31(7), 643–649 (2015).
  85. 85.
    W.T. Wahyuni, T.A. Ivandini, E. Saepudin, Y. Einaga, Development of neuraminidase detection using gold nanoparticles Boron-Doped diamond electrodes. Anal. Biochem. 497, 68–75 (2016). Scholar
  86. 86.
    T.A. Ivandini, E. Saepudin, H. Wardah, Harmesa, N. Dewangga, Y. Einaga, Development of a biochemical oxygen demand sensor using Gold-Modified boron doped diamond electrodes. Anal. Chem. 84(22), 9825–9832 (2012).
  87. 87.
    Y. Zhang, V. Suryanarayanan, I. Nakazawa, S. Yoshihara, T. Shirakashi, Electrochemical behavior of Au nanoparticle deposited on as-grown and O-terminated diamond electrodes for oxygen reduction in alkaline solution. Electrochim. Acta 49(28), 5235–5240 (2004). Scholar
  88. 88.
    L. Rassaei, M. Sillanpää, R.W. French, R.G. Compton, F. Marken, Arsenite determination in phosphate media at electroaggregated gold nanoparticle deposits. Electroanalysis 20(12), 1286–1292 (2008). Scholar
  89. 89.
    J. Svanberg-Larsson, G.W. Nelson, S.E. Steinvall, B.F. Leo, E. Brooke, D.J. Payne, J.S. Foord, A comparison of explicitly-terminated diamond electrodes decorated with gold nanoparticles. Electroanalysis 28(1), 88–95 (2016). Scholar
  90. 90.
    K.B. Holt, G. Sabin, R.G. Compton, J.S. Foord, F. Marken, Reduction of tetrachloroaurate(III) at Boron-Doped diamond electrodes: gold deposition versus gold colloid formation. Electroanalysis 14(12), 797–803 (2002).;2-MCrossRefGoogle Scholar
  91. 91.
    Á.I. López-Lorente, J. Izquierdo, C. Kranz, B. Mizaikoff, Boron-doped diamond modified with gold nanoparticles for the characterization of bovine serum albumin protein. Vib. Spectrosc. 91(Supplement C), 147–56 (2017).
  92. 92.
    S. Chai, Y. Wang, Y.-N. Zhang, M. Liu, Y. Wang, G. Zhao, Selective electrocatalytic degradation of odorous mercaptans derived from S-Au bond recognition on a dendritic gold/boron-doped diamond composite electrode. Environ. Sci. Technol. 51(14), 8067–8076 (2017). Scholar
  93. 93.
    C. Batchelor-McAuley, C.E. Banks, A.O. Simm, T.G. Jones, R.G. Compton, The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst 131(1), 106–110 (2006). Scholar
  94. 94.
    C. Batchelor-McAuley, C.E. Banks, A.O. Simm, T.G. Jones, R.G. Compton, Nano-Electrochemical detection of hydrogen or protons using palladium nanoparticles: distinguishing surface and bulk hydrogen. ChemPhysChem 7(5), 1081–1085 (2006). Scholar
  95. 95.
    C.K. Mavrokefalos, M. Hasan, W. Khunsin, M. Schmidt, S.A. Maier, J.F. Rohan, R.G. Compton, J.S. Foord, Electrochemically modified boron-doped diamond electrode with Pd and Pd-Sn nanoparticles for ethanol electrooxidation. Electrochimica Acta 243(Supplement C), 310–319 (2017).
  96. 96.
    G. Siné, G. Foti, C. Comninellis, Boron-doped diamond (BDD)-supported Pt/Sn nanoparticles synthesized in microemulsion systems as electrocatalysts of ethanol oxidation. J. Electroanal. Chem. 595(2), 115–124 (2006). Scholar
  97. 97.
    G. Siné, C. Comninellis, Nafion®-assisted deposition of microemulsion-synthesized platinum nanoparticles on BDD: activation by electrogenerated OH radicals. Electrochim. Acta 50(11), 2249–2254 (2005). Scholar
  98. 98.
    X. Lu, J. Hu, J.S. Foord, Q. Wang, Electrochemical deposition of Pt–Ru on diamond electrodes for the electrooxidation of methanol. J. Electroanal. Chem. 654(1), 38–43 (2011). Scholar
  99. 99.
    B. El Roustom, G. Sine, G. Foti, C. Comninellis, A novel method for the preparation of bi-metallic (Pt–Au) nanoparticles on boron doped diamond (BDD) substrate: application to the oxygen reduction reaction. J. Appl. Electrochem. 37(11), 1227–1236 (2007). Scholar
  100. 100.
    S. Nantaphol, T. Watanabe, N. Nomura, W. Siangproh, O. Chailapakul, Y. Einaga, Bimetallic Pt–Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens. Bioelectron. 98, 76–82 (2017). Scholar
  101. 101.
    S. Ferro, A. De Battisti, Electrocatalysis and chlorine evolution reaction at ruthenium dioxide deposited on conductive diamond. J. Phys. Chem. B 106(9), 2249–2254 (2002). Scholar
  102. 102.
    T. Spătaru, L. Preda, P. Osiceanu, C. Munteanu, M. Marcu, C. Lete, N. Spătaru, A. Fujishima, Electrochemical deposition of Pt–RuO (x) a < …nH(2)O composites on conductive diamond and its application to methanol oxidation in acidic media. Electrocatalysis 7(2), 140–148 (2016).
  103. 103.
    L. Chen, J. Hu, J.S. Foord, Electrodeposition of a Pt–PrO2 − x electrocatalyst on diamond electrodes for the oxidation of methanol. Physica Status Solidi (a) 209(9), 1792–1796 (2012).
  104. 104.
    M. Braiek, Y. Yang, C. Farre, C. Chaix, F. Bessueille, A. Baraket, A. Errachid, A.D. Zhang, N. Jaffrezic-Renault, Boron-doped diamond electrodes modified with Fe3O4@Au magnetic nanocomposites as sensitive platform for detection of a cancer biomarker, Interleukin-8. Electroanalysis 28(8), 1810–1816 (2016). Scholar
  105. 105.
    C. Terashima, T.N. Rao, B.V. Sarada, N. Spataru, A. Fujishima, Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications. J. Electroanal. Chem. 544, 65–74 (2003). Scholar
  106. 106.
    F. Marken, A.S. Bhambra, D.-H. Kim, R.J. Mortimer, S.J. Stott, Electrochemical reactivity of TiO2 nanoparticles adsorbed onto boron-doped diamond surfaces. Electrochem. Commun. 6(11), 1153–1158 (2004). Scholar
  107. 107.
    T. Spătaru, L. Preda, C. Munteanu, A.I. Căciuleanu, N. Spătaru, A. Fujishima, Influence of boron-doped diamond surface termination on the characteristics of titanium dioxide anodically deposited in the presence of a surfactant. J. Electrochem. Soc. 162(8), H535–H540 (2015). Scholar
  108. 108.
    F. Espinola-Portilla, R. Navarro-Mendoza, S. Gutiérrez-Granados, U. Morales-Muñoz, E. Brillas-Coso, J.M. Peralta-Hernández, A simple process for the deposition of TiO2 onto BDD by electrophoresis and its application to the photoelectrocatalysis of Acid Blue 80 dye. J. Electroanal. Chem. 802(Supplement C), 57–63. (2017).
  109. 109.
    K.J. McKenzie, F. Marken, Electrochemical characterization of hydrous ruthenium oxide nanoparticle decorated boron-doped diamond electrodes. Electrochem. Solid-State Lett. 5(9), E47–E50 (2002). Scholar
  110. 110.
    G.C. Sedenho, J.L. da Silva, M.A. Beluomini, A.C. de Sá, N.R. Stradiotto, Determination of electroactive organic acids in sugarcane vinasse by high performance anion-exchange chromatography with pulsed amperometric detection using a nickel nanoparticle modified boron-doped diamond. Energy Fuels 31(3), 2865–2870 (2017). Scholar
  111. 111.
    G.C. Sedenho, P.T. Lee, H.S. Toh, C. Salter, C. Johnston, N.R. Stradiotto, R.G. Compton, Nanoelectrocatalytic oxidation of lactic acid using nickel nanoparticles. J. Phys. Chem. C 119(12), 6896–6905 (2015). Scholar
  112. 112.
    A.J. Saterlay, S.J. Wilkins, K.B. Holt, J.S. Foord, R.G. Compton, F. Marken, Lead dioxide deposition and electrocatalysis at highly boron-doped diamond electrodes in the presence of ultrasound. J. Electrochem. Soc. 148(2), E66–E72 (2001). Scholar
  113. 113.
    C.K. Mavrokefalos, M. Hasan, J.F. Rohan, R.G. Compton, J.S. Foord, Electrochemically deposited Cu2O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation. Appl. Surf. Sci. 408, 125–134 (2017). Scholar
  114. 114.
    P. Gan, J.S. Foord, R.G. Compton, Surface modification of boron-doped diamond with microcrystalline copper phthalocyanine: oxygen reduction catalysis. ChemistryOpen 4(5), 606–612 (2015). Scholar
  115. 115.
    F. Shang, J.D. Glennon, J.H. Luong, Glucose oxidase entrapment in an electropolymerized poly (tyramine) film with sulfobutylether-β-cyclodextrin on platinum nanoparticle modified boron-doped diamond electrode. J. Phys. Chem. C 112(51), 20258–20263 (2008). Scholar
  116. 116.
    M.-J. Song, J.H. Kim, S.K. Lee, J.-H. Lee, D.S. Lim, S.W. Hwang, D. Whang, Pt-polyaniline nanocomposite on boron-doped diamond electrode for amperometic biosensor with low detection limit. Microchim. Acta 171(3–4), 249–255 (2010). Scholar
  117. 117.
    H.F. Cui, Y.F. Bai, W.W. Wu, X.Y. He, J.H.T. Luong, Modification with mesoporous platinum and poly(pyrrole-3-carboxylic acid)-based copolymer on boron-doped diamond for nonenzymatic sensing of hydrogen peroxide. J. Electroanal. Chem. 766, 52–59 (2016). Scholar
  118. 118.
    M.-J. Song, S.-K. Lee, D.-S. Lim, Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal. Sci. 28(6), 583–587 (2012). Scholar
  119. 119.
    Z. Deng, H. Long, Q. Wei, Z. Yu, B. Zhou, Y. Wang, L. Zhang, S. Li, L. Ma, Y. Xie, J. Min, High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode. Sens. Actuators B: Chem. 242(Supplement C), 825–34 (2017).
  120. 120.
    I. Duo, S. Ferro, A. De Battisti, C. Comninellis, Conductive metal-oxide nanoparticles on synthetic boron-doped diamond surfaces, in Catalysis and Electrocatalysis at Nanoparticle Surfaces, ed. by A. Wieckowski, E.R. Savinova, C.G. Vayenas (Marcel Dekker Inc, NY, 2003), pp. 877–906Google Scholar
  121. 121.
    K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, Y.-E. Sung, H.-Y. Ha, S.-A. Hong, H. Kim, A. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 106(8), 1869–1877 (2002). Scholar
  122. 122.
    M.A. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60(3), 267–73 (1975).
  123. 123.
    I. González-González, E.R. Fachini, M.A. Scibioh, D.A. Tryk, M. Tague, H.C.D. Abruña, C.R. Cabrera, Facet-selective platinum electrodeposition at free-standing polycrystalline boron-doped diamond films. Langmuir 25(17), 10329–10336 (2009).
  124. 124.
    T. Kondo, S. Aoshima, K. Hirata, K. Honda, Y. Einaga, A. Fujishima, T. Kawai, Crystal-Face-Selective Adsorption of Au Nanoparticles onto Polycrystalline diamond surfaces. Langmuir 24(14), 7545–7548 (2008). Scholar
  125. 125.
    M. Wei, L.G. Sun, Z.Y. Xie, J.F. Zhii, A. Fujishima, Y. Einaga, D.G. Fu, X.M. Wang, Z.Z. Gu, Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids. Adv. Func. Mater. 18(9), 1414–1421 (2008). Scholar
  126. 126.
    M. Wei, Z. Xie, L. Sun, Z.Z. Gu, Electrochemical properties of a boron-doped diamond electrode modified with gold/polyelectrolyte hollow spheres. Electroanalysis 21(2), 138–143 (2009). Scholar
  127. 127.
    M. Osawa, K.-I. Ataka, K. Yoshii, Y. Nishikawa, Surface-Enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47(9), 1497–1502 (1993). Scholar
  128. 128.
    J.K. Zak, J.E. Butler, G.M. Swain, Diamond optically transparent electrodes: demonstration of concept with ferri/ferrocyanide and methyl viologen. Anal. Chem. 73(5), 908–914 (2001). Scholar
  129. 129.
    H.B. Martin, P.W. Morrison, Application of a diamond thin film as a transparent electrode for in situ infrared spectroelectrochemistry. Electrochem. Solid-State Lett. 4(4), E17–E20 (2001). Scholar
  130. 130.
    D. Neubauer, J. Scharpf, A. Pasquarelli, B. Mizaikoff, C. Kranz, Combined in situ atomic force microscopy and infrared attenuated total reflection spectroelectrochemistry. Analyst 138(22), 6746–6752 (2013). Scholar
  131. 131.
    J. Izquierdo, B. Mizaikoff, C. Kranz, Surface-enhanced infrared spectroscopy on boron-doped diamond modified with gold nanoparticles for spectroelectrochemical analysis. Physica Status Solidi (a) 213(8), 2056–2062 (2016).
  132. 132.
    J. Hu, X. Lu, J. Foord, Nanodiamond pretreatment for the modification of diamond electrodes by platinum nanoparticles. Electrochem. Commun. 12(5), 676–679 (2010). Scholar
  133. 133.
    Wang, J.; Swain, G.; Tachibana, T.; Kobashi, K., The incorporation of Pt nanoparticles into boron-doped diamond thin-films: dimensionally stable catalytic electrodes. J. New Mater. Electrochem. Syst. 3(1), 75–82 (2000)Google Scholar
  134. 134.
    J. Wang, G.M. Swain, T. Tachibana, K. Kobashi, Electrocatalytic diamond thin film electrodes with incorporated PT. Electrochem. Soc. Inc: Pennington 2002, 157–167 (2001)Google Scholar
  135. 135.
    N.R. Wilson, S.L. Clewes, M.E. Newton, P.R. Unwin, J.V. Macpherson, Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes. J. Phys. Chem. B 110(11), 5639–5646 (2006). Scholar
  136. 136.
    F. Bottari, K. De Wael, Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules. J. Electroanal. Chem. 801(Supplement C), 521–526 (2017).
  137. 137.
    K.P. Loh, S.L. Zhao, W. De Zhang, Diamond and carbon nanotube glucose sensors based on electropolymerization. Diam. Relat. Mater. 13(4), 1075–1079 (2004). Scholar
  138. 138.
    C. Martínez-Huitle, N.S. Fernandes, S. Ferro, A. De Battisti, M. Quiroz, Fabrication and application of Nafion®-modified boron-doped diamond electrode as sensor for detecting caffeine. Diam. Relat. Mater. 19(10), 1188–1193 (2010). Scholar
  139. 139.
    P.R. Roy, M.S. Saha, T. Okajima, S.G. Park, A. Fujishima, T. Ohsaka, Selective detection of dopamine and its metabolite, DOPAC, in the presence of ascorbic acid using diamond electrode modified by the polymer film. Electroanalysis 16(21), 1777–1784 (2004). Scholar
  140. 140.
    A.O. Simm, C.E. Banks, S. Ward-Jones, T.J. Davies, N.S. Lawrence, T.G. Jones, L. Jiang, R.G. Compton, Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu) via electrodeposition. Analyst 130(9), 1303–1311 (2005). Scholar
  141. 141.
    A. Salimi, M.E. Hyde, C.E. Banks, R.G. Compton, Boron doped diamond electrode modified with iridium oxide for amperometic detection of ultra trace amounts of arsenic (III). Analyst 129(1), 9–14 (2004). Scholar
  142. 142.
    N. Vinokur, B. Miller, Y. Avyigal, R. Kalish, Cathodic and anodic deposition of mercury and silver at boron-doped diamond electrodes. J. Electrochem. Soc. 146(1), 125–130 (1999). Scholar
  143. 143.
    H. Terashima, T. Tsuji, Adsorption of bovine serum albumin onto mica surfaces studied by a direct weighing technique. Colloids Surf. B 27(2), 115–122 (2003). Scholar
  144. 144.
    H.E.M. Hussein, H. Amari, J.V. Macpherson, Electrochemical synthesis of nanoporous platinum nanoparticles using laser pulse heating: application to methanol oxidation. ACS Catal. 7(10), 7388–7398 (2017). Scholar
  145. 145.
    M. Limat, B. El Roustom, H. Jotterand, G. Fóti, C. Comninellis, Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode. Electrochim. Acta 54(9), 2410–2416 (2009). Scholar
  146. 146.
    C. Zhang, L. Gu, Y. Lin, Y. Wang, D. Fu, Z. Gu, Degradation of X-3B dye by immobilized TiO2 photocatalysis coupling anodic oxidation on BDD electrode. J. Photochem. Photobiol. A 207(1), 66–72 (2009). Scholar
  147. 147.
    F. Celii, J. Butler, Diamond chemical vapor deposition. Annu. Rev. Phys. Chem. 42(1), 643–684 (1991). Scholar
  148. 148.
    J.H. Luong, K.B. Male, J.D. Glennon, Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134(10), 1965–1979 (2009). Scholar
  149. 149.
    K.B. Holt, A.J. Bard, Y. Show, G.M. Swain, Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels. J. Phys. Chem. B 108, 15117–15127 (2004). Scholar
  150. 150.
    H. Notsu, I. Yagi, T. Tatsuma, D.A. Tryk, A. Fujishima, Introduction of oxygen-containing functional groups onto diamond electrode surfaces by oxygen plasma and anodic polarization. Electrochem. Solid-State Lett. 2(10), 522–524 (1999). Scholar
  151. 151.
    D.W. Arrigan, Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12), 1157–1165 (2004). Scholar
  152. 152.
    F. Maillard, M. Eikerling, O. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss. 125, 357–377 (2004). Scholar
  153. 153.
    S.R. Belding, E.J. Dickinson, R.G. Compton, Diffusional cyclic voltammetry at electrodes modified with random distributions of electrocatalytic nanoparticles: theory. J. Phys. Chem. C 113(25), 11149–11156 (2009). Scholar
  154. 154.
    T. Kondo, T. Morimura, T. Tsujimoto, T. Aikawa, M. Yuasa, Platinum nanoparticle-embedded porous diamond spherical particles as an active and stable heterogeneous catalyst. Sci Rep. 7, 10 (2017). Scholar
  155. 155.
    U. Griesbach, D. Zollinger, H. Pütter, C. Comninellis, Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale⋆. J. Appl. Electrochem. 35(12), 1265–1270 (2005). Scholar
  156. 156.
    D. Bavykin, E. Milsom, F. Marken, D. Kim, D. Marsh, D. Riley, F. Walsh, K. El-Abiary, A. Lapkin, A novel cation-binding TiO2 nanotube substrate for electro-and bioelectro-catalysis. Electrochem. Commun. 7(10), 1050–1058 (2005). Scholar
  157. 157.
    M.E. Hyde, R.G. Compton, A review of the analysis of multiple nucleation with diffusion controlled growth. J. Electroanal. Chem. 549, 1–12 (2003). Scholar
  158. 158.
    D. Grujicic, B. Pesic, Iron nucleation mechanisms on vitreous carbon during electrodeposition from sulfate and chloride solutions. Electrochim. Acta 50(22), 4405–4418 (2005). Scholar
  159. 159.
    D. Grujicic, B. Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim. Acta 50(22), 4426–4443 (2005). Scholar
  160. 160.
    S. Jones, K. Tedsree, M. Sawangphruk, J.S. Foord, J. Fisher, D. Thompsett, S.C.E. Tsang, Promotion of direct methanol electro-oxidation by Ru Terraces on Pt by using a reversed spillover mechanism. ChemCatChem 2(9), 1089–1095 (2010). Scholar
  161. 161.
    M.E. Hyde, R. Jacobs, R.G. Compton, In situ AFM studies of metal deposition. J. Phys. Chem. B 106(43), 11075–11080 (2002). Scholar
  162. 162.
    B. Scharifker, J. Mostany, Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site. J. Electroanal. Chem. Interfacial Electrochem. 177(1–2), 13–23 (1984).
  163. 163.
    Z.D. Wei, S.H. Chan, Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. J. Electroanal. Chem. 569(1), 23–33 (2004). Scholar
  164. 164.
    M. Mavrikakis, P. Stoltze, J.K. Nørskov, Making gold less noble. Catal. Lett. 64(2), 101–106 (2000). Scholar
  165. 165.
    A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. Barnett, U. Landman, When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103(48), 9573–9578 (1999). Scholar
  166. 166.
    M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383), 1647–1650 (1998).
  167. 167.
    O. Niwa, Electroanalytical chemistry with carbon film electrodes and micro and nano-structured carbon film-based electrodes. Bull. Chem. Soc. Jpn. 78(4), 555–571 (2005). Scholar
  168. 168.
    I. Duo, C. Comninellis, W. Haenni, Perret A, in Deposition of Nanoparticles of Iridium Dioxyde on a Synthetic Boron-Doped Diamond Surface, Diamond Materials Vii, Proceedings, Pennington, ed. by G.M. Swain, J.L. Davidson, J.C. Angus, T. Ando, W.D. Brown (Electrochemical Society Inc, Pennington, 2001), pp. 147–156Google Scholar
  169. 169.
    M.E. Hyde, C.E. Banks, R.G. Compton, Anodic stripping voltammetry: an AFM study of some problems and limitations. Electroanalysis 16(5), 345–354 (2004). Scholar
  170. 170.
    J. Barton, J.M. Bockris, The electrolytic growth of dendrites from ionic solutions, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, pp. 485–505 (1962)Google Scholar
  171. 171.
    M. Paunovic, M. Schlesinger, Kinetics and mechanism of electrodeposition, in Fundamentals of Electrochemical Deposition, 2nd edn. (Wiley, Hoboken, NJ, 2006), pp. 77–112Google Scholar
  172. 172.
    I. González-González, Y. Hernández-Lebrón, E. Nicolau, C.R. Cabrera, Ammonia oxidation enhancement at square-wave treated platinum particle modified boron-doped diamond electrodes. ECS Trans. 33(1), 201–209 (2010). Scholar
  173. 173.
    Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, S.-G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40(7), 4167–4185 (2011). Scholar
  174. 174.
    R. Lam, M. Chen, E. Pierstorff, H. Huang, E. Osawa, D. Ho, Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2(10), 2095–2102 (2008). Scholar
  175. 175.
    B. Guan, F. Zou, J. Zhi, Nanodiamond as the pH-Responsive vehicle for an anticancer drug. Small 6(14), 1514–1519 (2010). Scholar
  176. 176.
    A. Thalhammer, R.J. Edgington, L.A. Cingolani, R. Schoepfer, R.B. Jackman, The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials 31(8), 2097–2104 (2010). Scholar
  177. 177.
    Y. Wang, J. Zhi, Y. Liu, J. Zhang, Electrochemical detection of surfactant cetylpyridinium bromide using boron-doped diamond as electrode. Electrochem. Commun. 13(1), 82–85 (2011). Scholar
  178. 178.
    R.S. Lewis, T. Ming, J.F. Wacker, E. Steel, Interstellar diamonds in meteorites. Nature 326, 160–162 (1987). Scholar
  179. 179.
    V. Danilenko, Shock-wave sintering of nanodiamonds. Phys. Solid State 46(4), 711–715 (2004). Scholar
  180. 180.
    S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006). Scholar
  181. 181.
    A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu, Deagglomeration and functionalisation of detonation diamond. Physica Status Solidi (a) 204(9), 2881–2887 (2007).
  182. 182.
    B. Palosz, C. Pantea, E. Grzanka, S. Stelmakh, T. Proffen, T. Zerda, W. Palosz, Investigation of relaxation of nanodiamond surface in real and reciprocal spaces. Diam. Relat. Mater. 15(11), 1813–1817 (2006). Scholar
  183. 183.
    Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, Alkyl-, Amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 16(20), 3924–3930 (2004). Scholar
  184. 184.
    I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State 46(4), 636–643 (2004). Scholar
  185. 185.
    A. Härtl, E. Schmich, J.A. Garrido, J. Hernando, S.C. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, M. Stutzmann, Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 3(10), 736–742 (2004). Scholar
  186. 186.
    F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.P. Boudou, A. Krueger, J. Wrachtrup, Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7(12), 3588–3591 (2007). Scholar
  187. 187.
    P.-H. Chung, E. Perevedentseva, C.-L. Cheng, The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci. 601(18), 3866–3870 (2007). Scholar
  188. 188.
    O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C.E. Nebel, Size-dependent reactivity of diamond nanoparticles. ACS Nano 4(8), 4824–4830 (2010). Scholar
  189. 189.
    V. Bondar’, I. Pozdnyakova, A. Puzyr’, Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State 46(4), 758–760 (2004).
  190. 190.
    C. Nebel, H. Kato, B. Rezek, D. Shin, D. Takeuchi, H. Watanabe, T. Yamamoto, Electrochemical properties of undoped hydrogen terminated CVD diamond. Diam. Relat. Mater. 15(2), 264–268 (2006). Scholar
  191. 191.
    D. Shin, H. Watanabe, C.E. Nebel, Insulator−Metal transition of intrinsic diamond. J. Am. Chem. Soc. 127(32), 11236–11237 (2005). Scholar
  192. 192.
    V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, G.U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318(5855), 1424–1430 (2007). Scholar
  193. 193.
    K.B. Holt, D.J. Caruana, E.J. Millán-Barrios, Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J. Am. Chem. Soc. 131(32), 11272–11273 (2009). Scholar
  194. 194.
    T.S. Varley, M. Hirani, G. Harrison, K.B. Holt, Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. Faraday Discuss. 172, 349–364 (2014). Scholar
  195. 195.
    A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17(45), 4811–4819 (2007). Scholar
  196. 196.
    T. Brülle, A. Denisenko, H. Sternschulte, U. Stimming, Catalytic activity of platinum nanoparticles on highly boron-doped and 100-oriented epitaxial diamond towards HER and HOR. Phys. Chem. Chem. Phys. 13(28), 12883–12891 (2011). Scholar
  197. 197.
    K.B. Holt, CHAPTER 6 Electrochemistry of Nanodiamond Particles (The Royal Society of Chemistry, In Nanodiamond, 2014), pp. 128–150Google Scholar
  198. 198.
    I.A. Novoselova, E.N. Fedoryshena, É.V. Panov, A.A. Bochechka, L.A. Romanko, Electrochemical properties of compacts of nano-and microdisperse diamond powders in aqueous electrolytes. Phys. Solid State 46(4), 748–750 (2004). Scholar
  199. 199.
    L.H. Chen, J.B. Zang, Y.H. Wang, L.Y. Bian, Electrochemical oxidation of nitrite on nanodiamond powder electrode. Electrochim. Acta 53(8), 3442–3445 (2008). Scholar
  200. 200.
    J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, S. Ren, X. Qu, Surface modification and electrochemical behaviour of undoped nanodiamonds. Electrochim. Acta 72, 68–73 (2012). Scholar
  201. 201.
    I. Shpilevaya, J.S. Foord, Electrochemistry of methyl viologen and anthraquinonedisulfonate at diamond and diamond powder electrodes: the influence of surface chemistry. Electroanalysis 26(10), 2088–2099 (2014). Scholar
  202. 202.
    E. Peltola, N. Wester, K.B. Holt, L.-S. Johansson, J. Koskinen, V. Myllymäki, T. Laurila, Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability. Biosens. Bioelectron. 88(Supplement C), 273–282 (2017).
  203. 203.
    M. Briones, E. Casero, M.D. Petit-Dominguez, M.A. Ruiz, A.M. Parra-Alfambra, F. Pariente, E. Lorenzo, L. Vazquez, Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens. Bioelectron. 68, 521–528 (2015). Scholar
  204. 204.
    M. Briones, M.D. Petit-Dominguez, A.M. Parra-Alfambra, L. Vazquez, F. Pariente, E. Lorenzo, E. Casero, Electrocatalytic processes promoted by diamond nanoparticles in enzymatic biosensing devices. Bioelectrochemistry 111, 93–99 (2016). Scholar
  205. 205.
    N.B. Simioni, T.A. Silva, G.G. Oliveira, O. Fatibello, A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuator B-Chem. 250, 315–323 (2017). Scholar
  206. 206.
    N.B. Simioni, G.G. Oliveira, F.C. Vicentini, M.R.V. Lanza, B.C. Janegitz, O. Fatibello-Filho, Nanodiamonds stabilized in dihexadecyl phosphate film for electrochemical study and quantification of codeine in biological and pharmaceutical samples. Diam. Relat. Mater. 74(Supplement C), 191–196 (2017).
  207. 207.
    W. Zhang, K. Patel, A. Schexnider, S. Banu, A.D. Radadia, Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8(2), 1419–1428 (2014). Scholar
  208. 208.
    N. Hasan, W. Zhang, A.D. Radadia, Characterization of nanodiamond seeded interdigitated electrodes using impedance spectroscopy of pure water. Electrochim. Acta 210, 375–382 (2016). Scholar
  209. 209.
    Y. Goto, F. Ohishi, K. Tanaka, H. Usui, Formation of diamond nanoparticle thin films by electrophoretic deposition. Jpn. J. Appl. Phys. 55(3), 6 (2016). Scholar
  210. 210.
    L. La-Torre-Riveros, K. Soto, M.A. Scibioh, C.R. Cabrera, Electrophoretically fabricated diamond nanoparticle-based electrodes. J. Electrochem. Soc. 157(6), B831–B836 (2010). Scholar
  211. 211.
    S. Su, J. Wang, J. Wei, J. Qiu, S. Wang, Thermal conductivity studies of electrophoretically deposited nanodiamond arrays. Mater. Sci. Eng.: B 225(Supplement C), 54–59 (2017).
  212. 212.
    G.L. Bilbro, Theory of electrodeposition of diamond nanoparticles. Diam. Relat. Mater. 11(8), 1572–1577 (2002). Scholar
  213. 213.
    X. Zhao, J. Zang, Y. Wang, L. Bian, J. Yu, Electropolymerizing polyaniline on undoped 100 nm diamond powder and its electrochemical characteristics. Electrochem. Commun. 11(6), 1297–1300 (2009). Scholar
  214. 214.
    J. Zang, Y. Wang, X. Zhao, G. Xin, S. Sun, X. Qu, S. Ren, Electrochemical synthesis of polyaniline on nanodiamond powder. Int. J. Electrochem. Sci 7(2), 1677–1687 (2012)Google Scholar
  215. 215.
    H. Ashassi-Sorkhabi, M. Es’haghi, Electro-Synthesis of Nano-Colloidal PANI/ND composite for enhancement of Corrosion-Protection effect of PANI coatings. J. Mater. Eng. Perform. 22(12), 3755–3761 (2013).
  216. 216.
    E. Tamburri, S. Orlanducci, V. Guglielmotti, G. Reina, M. Rossi, M.L. Terranova, Engineering detonation nanodiamond–Polyaniline composites by electrochemical routes: structural features and functional characterizations. Polymer 52(22), 5001–5008 (2011). Scholar
  217. 217.
    E. Tamburri, V. Guglielmotti, S. Orlanducci, M.L. Terranova, D. Sordi, D. Passeri, R. Matassa, M. Rossi, Nanodiamond-mediated crystallization in fibers of PANI nanocomposites produced by template-free polymerization: conductive and thermal properties of the fibrillar networks. Polymer 53(19), 4045–4053 (2012). Scholar
  218. 218.
    V. Kumar, R. Mahajan, D. Bhatnagar, I. Kaur, Nanofibers synthesis of ND:PANI composite by liquid/liquid interfacial polymerization and study on the effect of NDs on growth mechanism of nanofibers. Eur. Polym. J. 83(Supplement C), 1–9 (2016).
  219. 219.
    V. Kumar, R. Mahajan, I. Kaur, K.-H. Kim, Simple and Mediator-Free urea sensing based on engineered nanodiamonds with polyaniline nanofibers synthesized in situ. ACS Appl. Mater. Interfaces 9(20), 16813–16823 (2017). Scholar
  220. 220.
    M. Briones, E. Casero, L. Vazquez, F. Pariente, E. Lorenzo, M.D. Petit-Dominguez, Diamond nanoparticles as a way to improve electron transfer in sol-gel L-lactate biosensing platforms. Anal. Chim. Acta 908, 141–149 (2016). Scholar
  221. 221.
    H. Ashassi-Sorkhabi, R. Bagheri, B. Rezaei-Moghadam, Corrosion protection properties of PPy-ND composite coating: sonoelectrochemical synthesis and design of experiment. J. Mater. Eng. Perform. 25(2), 611–622 (2016). Scholar
  222. 222.
    M.K. Ram, H. Gomez, F. Alvi, E. Stefanakos, Y. Goswami, A. Kumar, Novel nanohybrid structured regioregular polyhexylthiophene blend films for photoelectrochemical energy applications. J. Phys. Chem. C 115(44), 21987–21995 (2011). Scholar
  223. 223.
    N. Giambrone, M. McCrory, A. Kumar, M.K. Ram, Comparative photoelectrochemical studies of regioregular polyhexylthiophene with microdiamond, nanodiamond and hexagonal boron nitride hybrid films. Thin Solid Films 615, 226–232 (2016). Scholar
  224. 224.
    L.-N. Tsai, G.-R. Shen, Y.-T. Cheng, W. Hsu, Performance improvement of an electrothermal microactuator fabricated using Ni-diamond nanocomposite. J. Microelectromech. Syst. 15(1), 149–158 (2006). Scholar
  225. 225.
    E. Levashov, P. Vakaev, E. Zamulaeva, A. Kudryashov, V. Kurbatkina, D. Shtansky, A. Voevodin, A. Sanz, Disperse-strengthening by nanoparticles advanced tribological coatings and electrode materials for their deposition. Surf. Coat. Technol. 201(13), 6176–6181 (2007). Scholar
  226. 226.
    M. Sajjadnejad, H. Omidvar, M. Javanbakht, Influence of pulse operational parameters on electrodeposition, morphology and microstructure of Ni/nanodiamond composite coatings. Int. J. Electrochem. Sci. 12(5), 3635–3651 (2017). Scholar
  227. 227.
    M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari, Textural and structural evolution of pulse electrodeposited Ni/diamond nanocomposite coatings. J. Alloy. Compd. 704, 809–817 (2017). Scholar
  228. 228.
    T. Fujimura, V.Y. Dolmatov, G. Burkat, E. Orlova, M. Veretennikova, Electrochemical codeposition of Sn–Pb–metal alloy along with detonation synthesis nanodiamonds. Diam. Relat. Mater. 13(11), 2226–2229 (2004). Scholar
  229. 229.
    S. Shahrokhian, S. Ranjbar, M. Ghalkhani, Modification of the electrode surface by ag nanoparticles decorated nano Diamond-graphite for voltammetric determination of ceftizoxime. Electroanalysis 28(3), 469–476 (2016). Scholar
  230. 230.
    Y. Yao, Y.J. Xue, Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuator B-Chem. 211, 52–58 (2015). Scholar
  231. 231.
    L. Bian, Y. Wang, J. Lu, J. Zang, Synthesis and electrochemical properties of TiO2/nanodiamond nanocomposite. Diam. Relat. Mater. 19(10), 1178–1182 (2010). Scholar
  232. 232.
    L.Y. Bian, Y.H. Wang, J.B. Zang, J.K. Yu, H. Huang, Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts. J. Electroanal. Chem. 644(1), 85–88 (2010). Scholar
  233. 233.
    L. La-Torre-Riveros, E. Abel-Tatis, A.E. Méndez-Torres, D.A. Tryk, M. Prelas, C.R. Cabrera, Synthesis of platinum and platinum–ruthenium-modified diamond nanoparticles. J. Nanopart. Res. 13(7), 2997–3009 (2011). Scholar
  234. 234.
    L.Y. Bian, Y.H. Wang, J.B. Zang, F.W. Meng, Y.L. Zhao, Microwave synthesis and characterization of Pt nanoparticles supported on undoped nanodiamond for methanol electrooxidation. Int. J. Hydrog. Energy 37(2), 1220–1225 (2012). Scholar
  235. 235.
    L. La-Torre-Riveros, R. Guzman-Blas, A.N.E. Méndez-Torres, M. Prelas, D.A. Tryk, C.R. Cabrera, Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 4(2), 1134–11347 (2012)
  236. 236.
    J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, R. Lu, X. Qu, S. Ren, Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electro-oxidation. Carbon 50(8), 3032–3038 (2012). Scholar
  237. 237.
    Y.L. Zhao, Y.H. Wang, J.B. Zang, J. Lu, X.P. Xu, A novel support of nano titania modified graphitized nanodiamond for Pt electrocatalyst in direct methanol fuel cell. Int. J. Hydrog. Energy 40(13), 4540–4547 (2015). Scholar
  238. 238.
    Y. Zhang, Y.H. Wang, L.Y. Bian, R. Lu, J.B. Zang, Functional separation of oxidation-reduction reaction and electron transport: PtRu/undoped nanodiamond and acetylene black as a hybrid electrocatalyst in a direct methanol fuel cell. Int. J. Hydrog. Energy 41(8), 4624–4631 (2016). Scholar
  239. 239.
    L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). Scholar
  240. 240.
    Y.S. Zhu, Y.M. Lin, B.S. Zhang, J.F. Rong, B.N. Zong, D.S. Su, Nitrogen-doped annealed nanodiamonds with varied sp(2)/sp(3) ratio as metal-free electrocatalyst for the oxygen reduction reaction. Chemcatchem 7(18), 2840–2845 (2015). Scholar
  241. 241.
    E.Y. Choi, C.K. Kim, Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci Rep. 7(1), 4178 (2017). Scholar
  242. 242.
    L. Zhou, H. Zhang, X. Guo, H. Sun, S. Liu, M.O. Tade, S. Wang, Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications. J. Colloid Interface Sci. 493(Supplement C), 275–80 (2017).
  243. 243.
    D.H. Wang, L.-S. Tan, H. Huang, L. Dai, E. Ōsawa, In-situ nanocomposite synthesis: Arylcarbonylation and grafting of primary diamond nanoparticles with a poly(ether − ketone) in polyphosphoric acid. Macromolecules 42(1), 114–124 (2009).
  244. 244.
    K. Pei, H.D. Li, G.T. Zou, R.C. Yu, H.F. Zhao, X. Shen, L.Y. Wang, Y.P. Song, D.C. Qiu, Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell. J. Power Sources 342, 515–520 (2017). Scholar
  245. 245.
    X.-B. Cheng, M.-Q. Zhao, C. Chen, A. Pentecost, K. Maleski, T. Mathis, X.-Q. Zhang, Q. Zhang, J. Jiang, Y. Gogotsi, Nanodiamonds suppress the growth of lithium dendrites. Nat. Commun. 8(1), 336 (2017). Scholar
  246. 246.
    V. Medeliene, V. Stankevič, G. Bikulčius, The influence of artificial diamond additions on the formation and properties of an electroplated copper metal matrix coating. Surf. Coat. Technol. 168(2), 161–168 (2003). Scholar
  247. 247.
    N.K. Shrestha, T. Takebe, T. Saji, Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings. Diam. Relat. Mater. 15(10), 1570–1575 (2006). Scholar
  248. 248.
    L. Cunci, C.R. Cabrera, Preparation and electrochemistry of boron-doped diamond nanoparticles on glassy carbon electrodes. Electrochem. Solid-State Lett. 14(3), K17–K19 (2011). Scholar
  249. 249.
    J. Scholz, A.J. McQuillan, K.B. Holt, Redox transformations at nanodiamond surfaces revealed by in situ infrared spectroscopy. Chem. Commun. 47(44), 12140–12142 (2011). Scholar
  250. 250.
    Y.S. Zou, Y. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92(5), 053105 (2008). Scholar
  251. 251.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8(11), 3572–3576 (2008). Scholar
  252. 252.
    P. Subramanian, S. Kolagatla, S. Szunerits, Y. Coffinier, W.S. Yeap, K. Haenen, R. Boukherroub, A. Schechter, Atomic force microscopic and raman investigation of boron-doped diamond nanowire electrodes and their activity toward oxygen reduction. J Phys. Chem. C 121(6), 3397–3403 (2017). Scholar
  253. 253.
    M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 24, 3624–3626 (2009). Scholar
  254. 254.
    M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, Z.-Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22(2), 199–203 (2010). Scholar
  255. 255.
    F. Gao, G. Lewes-Malandrakis, M.T. Wolfer, W. Müller-Sebert, P. Gentile, D. Aradilla, T. Schubert, C.E. Nebel, Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam. Relat. Mater. 51(Supplement C), 1–6 (2015).
  256. 256.
    K. Siuzdak, R. Bogdanowicz, M. Sawczak, M. Sobaszek, Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 7(2), 551–558 (2015). Scholar
  257. 257.
    M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors. Thin Solid Films 601(Supplement C), 35–40 (2016).
  258. 258.
    V. Petrak, Z.V. Zivcova, H. Krysova, O. Frank, A. Zukal, L. Klimsa, J. Kopecek, A. Taylor, L. Kavan, V. Mortet, Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 114, 457–464 (2017). Scholar
  259. 259.
    C. Hébert, E. Scorsone, M. Mermoux, P. Bergonzo, Porous diamond with high electrochemical performance. Carbon 90(Supplement C), 102–109. (2015)
  260. 260.
    B.C. Lourencao, R.A. Pinheiro, T.A. Silva, E.J. Corat, O. Fatibello-Filho, Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications. Diam. Relat. Mater. 74(Supplement C), 182–190 (2017).
  261. 261.
    A.A. Silva, R.A. Pinheiro, C.D.A. Razzino, V.J. Trava-Airoldi, E.J. Corat, Thin-film nanocomposites of BDD/CNT deposited on carbon fiber. Diam. Relat. Mater. 75(Supplement C), 116–122 (2017).
  262. 262.
    M. Varga, S. Stehlik, O. Kaman, T. Izak, M. Domonkos, D.S. Lee, A. Kromka, Templated diamond growth on porous carbon foam decorated with polyvinyl alcohol-nanodiamond composite. Carbon 119(Supplement C), 124–132.
  263. 263.
    T. Kondo, K. Yajima, T. Kato, M. Okano, C. Terashima, T. Aikawa, M. Hayase, M. Yuasa, Hierarchically nanostructured boron-doped diamond electrode surface. Diam. Relat. Mater. 72(Supplement C), 13–19 (2017)
  264. 264.
    D. Plana, J. Humphrey, K. Bradley, V. Celorrio, D. Fermín, Charge transport across high surface area metal/diamond nanostructured composites. ACS Appl. Mater. Interfaces. 5(8), 2985–2990 (2013). Scholar
  265. 265.
    T. Kondo, K. Hirata, T. Kawai, M. Yuasa, Self-assembled fabrication of a polycrystalline boron-doped diamond surface supporting Pt (or Pd)/Au-shell/core nanoparticles on the (111) facets and Au nanoparticles on the (100) facets. Diam. Relat. Mater. 20(8), 1171–1178 (2011). Scholar
  266. 266.
    V. Plotnikov, B. Dem’yanov, S. Makarov, Effects of aluminum on the interaction of detonation diamond nanocrystals during high-temperature annealing. Tech. Phys. Lett. 35(5), 473–475 (2009).
  267. 267.
    D.P. Mitev, A.T. Townsend, B. Paull, P.N. Nesterenko, Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J. Mater. Sci. 49(10), 3573–3591 (2014). Scholar
  268. 268.
    V.Y. Dolmatov, A. Vehanen, V. Myllymäki, K.A. Rudometkin, A.N. Panova, K.M. Korolev, T.A. Shpadkovskaya, Purification of detonation nanodiamond material using high-intensity processes. Russ. J. Appl. Chem. 86(7), 1036–1045 (2013). Scholar
  269. 269.
    V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand, D. Spitzer, An efficient purification method for detonation nanodiamonds. Diam. Relat. Mater. 17(1), 13–22 (2008). Scholar
  270. 270.
    O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P. Detkov, S. Turner, G. Van Tendeloo, Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 115(20), 9827–9837 (2011). Scholar
  271. 271.
    S.P. Hong, T.H. Kim, S.W. Lee, Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern. Carbon 116(Supplement C), 640–647 (2017).
  272. 272.
    N. Kannari, T. Itakura, J.-I. Ozaki, Electrochemical oxygen reduction activity of intermediate onion-like carbon produced by the thermal transformation of nanodiamond. Carbon 87(Supplement C), 415–417 (2015).
  273. 273.
    J. Koh, S.H. Park, M.W. Chung, S.Y. Lee, S.I. Woo, Diamond@carbon-onion hybrid nanostructure as a highly promising electrocatalyst for the oxygen reduction reaction. RSC Adv. 6(33), 27528–27534 (2016). Scholar
  274. 274.
    X.X. Liu, Y.H. Wang, L. Dong, X. Chen, G.X. Xin, Y. Zhang, J.B. Zang, One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Electrochim. Acta 194, 161–167 (2016). Scholar
  275. 275.
    K.E. Toghill, L. Xiao, N.R. Stradiotto, R.G. Compton, The determination of methanol using an electrolytically fabricated nickel microparticle modified boron doped diamond electrode. Electroanalysis 22(5), 491–500 (2010). Scholar
  276. 276.
    A. Panich, A. Altman, A. Shames, V.Y. Osipov, A. Aleksenskiy, A.Y. Vul, Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. J. Phys. D Appl. Phys. 44(12), 125303 (2011). Scholar
  277. 277.
    A.I. Shames, A.M. Panich, V.Y. Osipov, A.E. Aleksenskiy, A.Y. Vul’, T. Enoki, K. Takai, Structure and magnetic properties of detonation nanodiamond chemically modified by copper. J. Appl. Phys. 107(1), 014318 (2010).
  278. 278.
    A. Panich, A. Shames, O. Medvedev, V.Y. Osipov, A. Aleksenskiy, A.Y. Vul, Magnetic resonance study of detonation nanodiamonds with surface chemically modified by transition metal ions. Appl. Magn. Reson. 36(2–4), 317 (2009). Scholar
  279. 279.
    A.M. Panich, A.I. Shames, N.A. Sergeev, V.Y. Osipov, A.E. Alexenskiy, A.Y. Vul’, Magnetic resonance study of gadolinium-grafted nanodiamonds. J. Phys. Chem. C 120(35), 19804–19811 (2016).
  280. 280.
    H.J. Looi, L.Y. Pang, M.D. Whitfield, J.S. Foord, R.B. Jackman, Engineering low resistance contacts on p-type hydrogenated diamond surfaces. Diam. Relat. Mater. 9(3), 975–981 (2000). Scholar
  281. 281.
    Y. Jia, W. Zhu, E. Wang, Y. Huo, Z. Zhang, Initial stages of Ti growth on diamond (100) surfaces: from single adatom diffusion to quantum wire formation. Phys. Rev. Lett. 94(8), 086101 (2005). Scholar
  282. 282.
    S. Stehlik, T. Petit, H.A. Girard, J.-C. Arnault, A. Kromka, B. Rezek, Nanoparticles assume electrical potential according to substrate, size, and surface termination. Langmuir 29(5), 1634–1641 (2013). Scholar
  283. 283.
    I. Motochi, N. Makau, G. Amolo, Metal–semiconductor ohmic contacts: An ab initio Density Functional Theory study of the structural and electronic properties of metal–diamond (111) − (1 × 1) interfaces. Diam. Relat. Mater. 23, 10–17 (2012). Scholar
  284. 284.
    M. Geis, J. Twichell, T. Lyszczarz, Diamond emitters fabrication and theory. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 14(3), 2060–2067 (1996). Scholar
  285. 285.
    T. Tyler, V. Zhirnov, A. Kvit, D. Kang, J. Hren, Electron emission from diamond nanoparticles on metal tips. Appl. Phys. Lett. 82(17), 2904–2906 (2003). Scholar
  286. 286.
    N. Xu, Y. Tzeng, R. Latham, Similarities in the ‘cold’ electron emission characteristics of diamond coated molybdenum electrodes and polished bulk graphite surfaces. J. Phys. D Appl. Phys. 26(10), 1776 (1993). Scholar
  287. 287.
    V.V. Zhirnov, E.I. Givargizov, P.S. Plekhanov, Field emission from silicon spikes with diamond coatings. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(2), 418–421 (1995). Scholar
  288. 288.
    A. Karabutov, V. Frolov, V. Konov, Diamond/sp 2-bonded carbon structures: quantum well field electron emission? Diam. Relat. Mater. 10(3), 840–846 (2001). Scholar
  289. 289.
    Y. Takasu, S. Konishi, W. Sugimoto, Y. Murakami, Catalytic formation of nanochannels in the surface layers of diamonds by metal nanoparticles. Electrochem. Solid-State Lett. 9(7), C114–C117 (2006). Scholar
  290. 290.
    I.G. Casella, M. Contursi, Cobalt oxide electrodeposition on various electrode substrates from alkaline medium containing Co–gluconate complexes: a comparative voltammetric study. J. Solid State Electrochem. 16(12), 3739–3746 (2012). Scholar
  291. 291.
    S.A. Yao, R.E. Ruther, L. Zhang, R.A. Franking, R.J. Hamers, J.F. Berry, Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J. Am. Chem. Soc. 134(38), 15632–15635 (2012). Scholar
  292. 292.
    I. Zegkinoglou, P.L. Cook, P.S. Johnson, W. Yang, J. Guo, D. Pickup, R.N. González-Moreno, C. Rogero, R.E. Ruther, M.L. Rigsby, Electronic structure of diamond surfaces functionalized by Ru(tpy)2. J. Phys. Chem. C 116(26), 13877–13883 (2012).
  293. 293.
    T. Ochiai, K. Nakata, T. Murakami, A. Fujishima, Y. Yao, D.A. Tryk, Y. Kubota, Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst. Water Res. 44(3), 904–910 (2010). Scholar
  294. 294.
    P. Wang, M. Cao, Y. Ao, C. Wang, J. Hou, J. Qian, Investigation on Ce-doped TiO2-coated BDD composite electrode with high photoelectrocatalytic activity under visible light irradiation. Electrochem. Commun. 13(12), 1423–1426 (2011). Scholar
  295. 295.
    T. Zhao, J. Wang, L. Jiang, T. Cheng, Preparation method of titanium dioxide and boron-doped diamond compounded photoelectric-synergetic electrode. CN101875007 A, 2010Google Scholar
  296. 296.
    D. Zhu, L. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12(9), 836–841 (2013). Scholar
  297. 297.
    R.J. Hamers, J.A. Bandy, D. Zhu, L. Zhang, Photoemission from diamond films and substrates into water: dynamics of solvated electrons and implications for diamond photoelectrochemistry. Faraday Discuss. 172, 397–411 (2014). Scholar
  298. 298.
    J.T. Matsushima, A.B. Couto, N.G. Ferreira, M.R. Baldan, Study of the electrochemical deposition of Cu/Sn alloy nanoparticles on boron doped diamond films for electrocatalytic nitrate reduction. MRS Proc. 1511 (2013).
  299. 299.
    M.-J. Song, S.-K. Lee, D.-S. Lim, Fabrication of Pt nanoparticles-decorated CVD diamond electrode for biosensor applications. Anal. Sci. 27(10), 985–985 (2011).
  300. 300.
    N. Yang, F. Gao, C.E. Nebel, Diamond decorated with copper nanoparticles for electrochemical reduction of carbon dioxide. Anal. Chem. 85(12), 5764–5769 (2013)Google Scholar
  301. 301.
    P. Kim, J.B. Joo, W. Kim, J. Kim, I.K. Song, J. Yi, NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J. Power Sources 160(2), 987–990 (2006). Scholar
  302. 302.
    A. Barras, S. Szunerits, L. Marcon, N. Monfilliette-Dupont, R. Boukherroub, Functionalization of diamond nanoparticles using “Click” chemistry. Langmuir 26(16), 13168–13172 (2010). Scholar
  303. 303.
    A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 22(5), 890–906 (2012). Scholar
  304. 304.
    Sung, C.-M. Diamond neural devices and associated methods. US20110282421A1, 2011Google Scholar
  305. 305.
    A. Barriga-Rivera, L. Bareket, J. Goding, U.A. Aregueta-Robles, G.J. Suaning, Visual prosthesis: interfacing stimulating electrodes with retinal neurons to restore vision. Front. Neurosci. 11(620) (2017).
  306. 306.
    Y.-C. Chen, D.-C. Lee, T.-Y. Tsai, C.-Y. Hsiao, J.-W. Liu, C.-Y. Kao, H.-K. Lin, H.-C. Chen, T.J. Palathinkal, W.-F. Pong, N.-H. Tai, I.N. Lin, I.-M. Chiu, Induction and regulation of differentiation in neural stem cells on ultra-nanocrystalline diamond films. Biomaterials 31(21), 5575–5587 (2010). Scholar
  307. 307.
    A.E. Hadjinicolaou, R.T. Leung, D.J. Garrett, K. Ganesan, K. Fox, D.A.X. Nayagam, M.N. Shivdasani, H. Meffin, M.R. Ibbotson, S. Prawer, B.J. O’Brien, Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 33(24), 5812–5820 (2012). Scholar
  308. 308.
    A. Ahnood, H. Meffin, D.J. Garrettm, K. Fox, K. Ganesan, A. Stacey, N.V. Apollo, Y.T. Wong, S.G. Lichter, W. Kentler, O. Kavehei, U. Greferath, K.A. Vessey, M.R. Ibbotson, E.L. Fletcher, A.N. Burkitt, S. Prawer, Diamond devices for high acuity prosthetic vision. Adv. Biosyst. 1(1–2), 1600003-n/a (2017).
  309. 309.
    K. Ganesan, D.J. Garrett, A. Ahnood, M.N. Shivdasani, W. Tong, A.M. Turnley, K. Fox, H. Meffin, S. Prawer, An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials 35(3), 908–915 (2014). Scholar
  310. 310.
    A. Bendali, L. Rousseau, G. Lissorgues, E. Scorsone, M. Djilas, J. Dégardin, E. Dubus, S. Fouquet, R. Benosman, P. Bergonzo, J.-A. Sahelm, S. Picaud, Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility. Biomaterials 67(Supplement C), 73–83 (2015).
  311. 311.
    A. Bendali, C. Agnès, S. Meffert, V. Forster, A. Bongrain, J.-C. Arnault, J.-A. Sahel, A. Offenhäusser, P. Bergonzo, S. Picaud, Distinctive glial and neuronal interfacing on nanocrystalline diamond. PLoS ONE 9(3), e92562 (2014). Scholar
  312. 312.
    G. Piret, C. Hébert, J.-P. Mazellier, L. Rousseau, E. Scorsone, M. Cottance, G. Lissorgues, M.O. Heuschkel, S. Picaud, P. Bergonzo, B. Yvert, 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53(Supplement C), 173–83 (2015).
  313. 313.
    C. Hébert, J.P. Mazellier, E. Scorsone, M. Mermoux, P. Bergonzo, Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon 71(Supplement C), 27–33 (2014).
  314. 314.
    F. Vahidpour, L. Curley, I. Biró, M. McDonald, D. Croux, P. Pobedinskas, K. Haenen, M. Giugliano, Z.V. Živcová, L. Kavan, M. Nesládek, All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Physica Status Solidi (a) 214(2), 1532347-n/a (2017).
  315. 315.
    M. McDonald, A. Monaco, F. Vahidpour, K. Haenen, M. Giugliano, M. Nesladek, Diamond microelectrode arrays for in vitro neuronal recordings. MRS Commun. 7(3), 683–690 (2017). Scholar
  316. 316.
    V. Maybeck, R. Edgington, A. Bongrain, J.O. Welch, E. Scorsone, P. Bergonzo, R.B. Jackman, A. Offenhäusser, Boron-Doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc. Mater. 3(2), 283–289 (2014). Scholar
  317. 317.
    D. Gaurab, T. Chao, S. Shabnam, U.A. Prabhu, Enabling long term monitoring of dopamine using dimensionally stable ultrananocrystalline diamond microelectrodes. Mater. Res. Express 3(9), 094001 (2016). Scholar
  318. 318.
    N. Yang, R. Hoffmann, W. Smirnov, C.E. Nebel, Interface properties of cytochrome c on a nano-textured diamond surface. Diam. Relat. Mater. 20(2), 269–273 (2011). Scholar
  319. 319.
    N. Yang, W. Smirnov, A. Kriele, R. Hoffmann, C.E. Nebel, Diamond nanotextured surfaces for enhanced protein redox activity. Physica Status Solidi (a) 207(9), 2069–72 (2010).
  320. 320.
    B.C. Janegitz, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Direct electrochemistry of tyrosinase and biosensing for phenol based on gold nanoparticles electrodeposited on a boron-doped diamond electrode. Diam. Relat. Mater. 25, 128–133 (2012). Scholar
  321. 321.
    A. Liu, Q. Ren, T. Xu, M. Yuan, W. Tang, Morphology-controllable gold nanostructures on phosphorus doped diamond-like carbon surfaces and their electrocatalysis for glucose oxidation. Sens. Actuators B: Chem. 162(1), 135–142 (2012). Scholar
  322. 322.
    Y. Yu, Y. Zhou, L. Wu, J. Zhi, Electrochemical biosensor based on boron-doped diamond electrodes with modified surfaces. Int. J. Electrochem. 2012, 10 (2012). Scholar
  323. 323.
    B. Liu, J. Hu, J.S. Foord, Electrochemical detection of DNA hybridization by a zirconia modified diamond electrode. Electrochem. Commun. 19, 46–49 (2012). Scholar
  324. 324.
    A. Zeng, C. Jin, S.-J. Cho, H.O. Seo, Y.D. Kim, D.C. Lim, D.H. Kim, B. Hong, J.-H. Boo, Nickel nano-particle modified nitrogen-doped amorphous hydrogenated diamond-like carbon film for glucose sensing. Mater. Res. Bull. 47(10), 2713–2716 (2012). Scholar
  325. 325.
    W. Wu, R. Xie, L. Bai, Z. Tang, Z. Gu, Direct electrochemistry of shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique. J. Nanosci. Nanotechnol. 12(5), 3903–3908 (2012). Scholar
  326. 326.
    C.-C. Wu, C.-C. Han, H.-C. Chang, Applications of surface-functionalized diamond nanoparticles for mass-spectrometry-based proteomics. J. Chin. Chem. Soc. 57(3B), 583–594 (2010). Scholar
  327. 327.
    X. Fuku, F. Iftikar, E. Hess, E. Iwuoha, P. Baker, Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Anal. Chim. Acta 730, 49–59 (2012). Scholar
  328. 328.
    R. Hoffmann, A. Kriele, S. Kopta, W. Smirnov, N. Yang, C.E. Nebel, Adsorption of cytochrome c on diamond. physica Status Solidi (a) 207(9), 2073–2077 (2010).
  329. 329.
    Y. Zou, D. Lou, K. Dou, L. He, Y. Dong, S. Wang, Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds. J. Solid State Electrochem. 20(1), 47–54 (2016). Scholar
  330. 330.
    A. Rahim Ruslinda, K. Tanabe, S. Ibori, X. Wang, H. Kawarada, Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein. Biosens. Bioelectron. 40(1), 277–282 (2013). Scholar
  331. 331.
    M.-J. Song, S.-K. Lee, J.-Y. Lee, J.-H. Kim, D.-S. Lim, Electrochemical sensor based on Au nanoparticles decorated boron-doped diamond electrode using ferrocene-tagged aptamer for proton detection. J. Electroanal. Chem. 677–680, 139–144 (2012). Scholar
  332. 332.
    D.T. Tran, V. Vermeeren, L. Grieten, S. Wenmackers, P. Wagner, J. Pollet, K.P.F. Janssen, L. Michiels, J. Lammertyn, Nanocrystalline diamond impedimetric aptasensor for the label-free detection of human IgE. Biosens. Bioelectron. 26(6), 2987–2993 (2011). Scholar
  333. 333.
    O. Babchenko, E. Verveniotis, K. Hruska, M. Ledinsky, A. Kromka, B. Rezek, Direct growth of sub-micron diamond structures. Vacuum 86(6), 693–695 (2012). Scholar
  334. 334.
    K. Honda, M. Yoshimura, T.N. Rao, D.A. Tryk, A. Fujishima, K. Yasui, Y. Sakamoto, K. Nishio, H. Masuda, Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes. J. Electroanal. Chem. 514(1–2), 35–50 (2001). Scholar
  335. 335.
    A. Kriele, O.A. Williams, M. Wolfer, J.J. Hees, W. Smirnov, C.E. Nebel, Formation of nano-pores in nano-crystalline diamond films. Chem. Phys. Lett. 507(4–6), 253–259 (2011). Scholar
  336. 336.
    F. Weigl, S. Fricker, H.-G. Boyen, C. Dietrich, B. Koslowski, A. Plettl, O. Pursche, P. Ziemann, P. Walther, C. Hartmann, M. Ott, M. Möller, From self-organized masks to nanotips: a new concept for the preparation of densely packed arrays of diamond field emitters. Diam. Relat. Mater. 15(10), 1689–1694 (2006). Scholar
  337. 337.
    C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. Williams, Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam. Relat. Mater. 18(5–8), 910–917 (2009). Scholar
  338. 338.
    P. Subramanian, Y. Coffinier, D. Steinmüller-Nethl, J. Foord, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochim. Acta 110, 4–8 (2013). Scholar
  339. 339.
    N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013). Scholar
  340. 340.
    H.A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille, J.-C. Arnault, P. Bergonzo, J.-P. Boilot, T. Gacoin, Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films. ACS Appl. Mater. Interfaces. 1(12), 2738–2746 (2009). Scholar
  341. 341.
    H. Zhuang, B. Song, T. Staedler, X. Jiang, Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication. Langmuir 27(19), 11981–11989 (2011). Scholar
  342. 342.
    O. Babchenko, A. Kromka, K. Hruska, M. Michalka, J. Potmesil, M. Vanecek, Nanostructuring of diamond films using self-assembled nanoparticles. Cent. Eur. J. Phys. 7(2), 310–314 (2009). Scholar
  343. 343.
    G. Powch, A. Jain, In Directed Self Assembly: a Novel, High Speed Method of Nanocoating Ultra-thin Films and Monolayers of Particles, 2012 NSTI Nanotechnology Conference and Expo, Santa Clara, CA (CRC Press: Santa Clara, CA, 2012), pp. 474–7Google Scholar
  344. 344.
    H. Sim, S.-I. Hong, S.-K. Lee, D.-S. Lim, J.-E. Jin, S.-W. Hwang, Fabrication of boron-doped nanocrystalline diamond nanoflowers based on 3D Cu(OH)2 dendritic architectures. J. Korean Phys. Soc. 60(5), 836–841 (2012). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryOxford UniversityOxfordUK

Personalised recommendations