Advertisement

Nanoparticle-Based Diamond Electrodes

  • Mailis M. Lounasvuori
  • Geoffrey W. NelsonEmail author
  • John S. FoordEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

This chapter reviews the construction, modification, and physical characteristics of two types of diamond electrodes: nanoparticle-modified diamond electrodes (NMDE) and detonation nanodiamond-based electrodes (DNDE). These particular types of diamond electrodes show great promise for improving the performance of diamond electrodes via the incorporation of nano-scale chemistry at their surfaces. The construction of both types of electrodes is reviewed, along with the resultant physical and electronic effects. The methods reviewed here are particularly applicable for electroanalytical and electrocatalytic applications of nanoparticle-based diamond electrodes. A brief review of progress on the interactions between metals and diamond at nanoparticle-based electrodes is also included. Finally, an outline of the present state-of-the art research in this field is presented.

Keywords

Diamond electrodes Nanoparticles Detonation nanodiamond Electroanalysis Electrocatalysis 

References

  1. 1.
    R.G. Compton, J.S. Foord, F. Marken, Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15(17), 1349–1363 (2003).  https://doi.org/10.1002/elan.200302830CrossRefGoogle Scholar
  2. 2.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009).  https://doi.org/10.1080/10408430902831987CrossRefGoogle Scholar
  3. 3.
    S. Fierro, Y. Einaga, Advances in electrochemical biosensing using boron doped diamond microelectrode, in Novel Aspects of Diamond: From Growth to Applications, vol. 121, ed. by N. Yang (Springer, Berlin, 2015), pp. 295–318Google Scholar
  4. 4.
    X.F. Chen, W.J. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46(3), 734–760 (2017).  https://doi.org/10.1039/c6cs00109bCrossRefGoogle Scholar
  5. 5.
    T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Electroanalytical application of modified diamond electrodes. Diam. Relat. Mater. 13(11), 2003–2008 (2004).  https://doi.org/10.1016/j.diamond.2004.07.004CrossRefGoogle Scholar
  6. 6.
    N. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a review. Carbon 99(Supplement C), 90–110 (2016). DOI: https://doi.org/10.1016/j.carbon.2015.11.061
  7. 7.
    J. Radjenovic, D.L. Sedlak, Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49(19), 11292–11302 (2015).  https://doi.org/10.1021/acs.est.5b02414CrossRefGoogle Scholar
  8. 8.
    H. Sarkka, A. Bhatnagar, M. Sillanpaa, Recent developments of electro-oxidation in water treatment—A review. J. Electroanal. Chem. 754, 46–56 (2015).  https://doi.org/10.1016/j.jelechem.2015.06.016CrossRefGoogle Scholar
  9. 9.
    P.R.F. da Costa, E.V. dos Santos, J.M. Peralta-Hernandez, G.R. Salazar-Banda, D.R. da Silva, C.A. Martinez-Huitle, modified diamond electrodes for electrochemical systems for energy conversion and storage, in Novel Aspects of Diamond: From Growth to Applications, vol. 121, ed. by N. Yang (Springer, Berlin, 2015), pp. 205–235Google Scholar
  10. 10.
    K.B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 365(1861), 2845–2861 (2007).  https://doi.org/10.1098/rsta.2007.0005CrossRefGoogle Scholar
  11. 11.
    J. Wolters, G. Kewes, A.W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, O. Benson, Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities. Physica Status Solidi (b) 249(5), 918–24 (2012).  https://doi.org/10.1002/pssb.201100156
  12. 12.
    R.B. Liu, W. Yao, L.J. Sham, Quantum computing by optical control of electron spins. Adv. Phys. 59(5), 703–802 (2010).  https://doi.org/10.1080/00018732.2010.505452CrossRefGoogle Scholar
  13. 13.
    X. Rong, D.W. Lu, X. Kong, J.P. Geng, Y. Wang, F.Z. Shi, C.K. Duan, J.F. Du, Harnessing the power of quantum systems based on spin magnetic resonance: from ensembles to single spins. Adv. Phys. 2(1), 125–68 (2017).  https://doi.org/10.1080/23746149.2016.1266914
  14. 14.
    V.Y. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 70(7), 607 (2001).  https://doi.org/10.1070/RC2001v070n07ABEH000665CrossRefGoogle Scholar
  15. 15.
    K.I.B. Eguiluz, J.M. Peralta-Hernández, A. Hernández-Ramírez, J.L. Guzmán-Mar, L. Hinojosa-Reyes, C.A. Martínez-Huitle, G.R. Salazar-Banda, The use of diamond for energy conversion system applications: a review. Int. J. Electrochem. 2012, 20 (2012).  https://doi.org/10.1155/2012/675124CrossRefGoogle Scholar
  16. 16.
    A. Kraft, Conductive diamond layers. Production, properties, and possible uses of new electrode materials. Jahrb. Oberflaechentech. 61, 109–20 (2005)Google Scholar
  17. 17.
    H. Yuen Yung, C. Chia-Liang, C. Huan-Cheng, Nanodiamonds for optical bioimaging. J. Phys. D Appl. Phys. 43(37), 374021 (2010).  https://doi.org/10.1088/0022-3727/43/37/374021CrossRefGoogle Scholar
  18. 18.
    J. Zang, L. Dong, Y.-H. Wang, Review on electrochemical property and surface modifications of nanodiamond powders. Yanshan da xue xue bao 2, 002 (2012)Google Scholar
  19. 19.
    N. Fujimori, T. Imai, A. Doi, Characterization of conducting diamond films. Vacuum 36(1), 99–102 (1986).  https://doi.org/10.1016/0042-207X(86)90279-4CrossRefGoogle Scholar
  20. 20.
    K.E. Toghill, R.G. Compton, Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis. Electroanalysis 22(17–18), 1947–1956 (2010).  https://doi.org/10.1002/elan.201000072CrossRefGoogle Scholar
  21. 21.
    A. Kraft, Doped diamond electrodes. New trends and developments. Jahrb. Oberflaechentech. 63, 85–95 (2007)Google Scholar
  22. 22.
    I. Novoselova, E. Fedorishena, E. Panov, Electrodes from diamond and diamond-like materials for electrochemical applications. J. Superhard Mater. 29(1), 24–39 (2007).  https://doi.org/10.3103/S1063457607010042CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, J. Zhi, The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5), 1189–1196 (2009).  https://doi.org/10.1016/j.talanta.2009.05.026CrossRefGoogle Scholar
  24. 24.
    D. Yamada, T.A. Ivandini, M. Komatsu, A. Fujishima, Y. Einaga, Anodic stripping voltammetry of inorganic species of as 3 + and as 5 + at gold-modified boron doped diamond electrodes. J. Electroanal. Chem. 615(2), 145–153 (2008).  https://doi.org/10.1016/j.jelechem.2007.12.004CrossRefGoogle Scholar
  25. 25.
    L.A. Hutton, M. Vidotti, A.N. Patel, M.E. Newton, P.R. Unwin, J.V. Macpherson, Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J. Phys. Chem. 115(5), 1649–1658 (2010).  https://doi.org/10.1021/jp109526bCrossRefGoogle Scholar
  26. 26.
    G.R. Salazar-Banda, K.I. Eguiluz, L.A. Avaca, Boron-doped diamond powder as catalyst support for fuel cell applications. Electrochem. Commun. 9(1), 59–64 (2007).  https://doi.org/10.1016/j.elecom.2006.08.038CrossRefGoogle Scholar
  27. 27.
    L. Bian, Y. Wang, J. Zang, F. Meng, Y. Zhao, Detonation-synthesized nanodiamond as a stable support of Pt electrocatalyst for methanol electrooxidation. Int. J. Electrochem. Sci. 7(8), 7295–303 (2012)Google Scholar
  28. 28.
    S. Szunerits, R. Boukherroub, Investigation of the electrocatalytic activity of boron-doped diamond electrodes modified with palladium or gold nanoparticles for oxygen reduction reaction in basic medium. C. R. Chim. 11(9), 1004–1009 (2008).  https://doi.org/10.1016/j.crci.2008.01.015CrossRefGoogle Scholar
  29. 29.
    S.R. Belding, F.W. Campbell, E.J. Dickinson, R.G. Compton, Nanoparticle-modified electrodes. Phys. Chem. Chem. Phys. 12(37), 11208–11221 (2010).  https://doi.org/10.1039/C0CP00233JCrossRefGoogle Scholar
  30. 30.
    K.B. Holt, C. Ziegler, D.J. Caruana, J. Zang, E.J. Millán-Barrios, J. Hu, J.S. Foord, Redox properties of undoped 5 nm diamond nanoparticles. Phys. Chem. Chem. Phys. 10(2), 303–310 (2008).  https://doi.org/10.1039/B711049ACrossRefGoogle Scholar
  31. 31.
    J.-S. Gao, T. Arunagiri, J.-J. Chen, P. Goodwill, O. Chyan, J. Perez, D. Golden, Preparation and characterization of metal nanoparticles on a diamond surface. Chem. Mater. 12(11), 3495–3500 (2000).  https://doi.org/10.1021/cm000465oCrossRefGoogle Scholar
  32. 32.
    F. Gao, N. Yang, W. Smirnov, H. Obloh, C.E. Nebel, Size-controllable and homogeneous platinum nanoparticles on diamond using wet chemically assisted electrodeposition. Electrochim. Acta 90, 445–451 (2013).  https://doi.org/10.1016/j.electacta.2012.12.050CrossRefGoogle Scholar
  33. 33.
    J. Hu, X. Lu, J.S. Foord, Q. Wang, Electrochemical deposition of Pt nanoparticles on diamond substrates. Physica Status Solidi (a) 206(9), 2057–62 (2009).  https://doi.org/10.1002/pssa.200982226
  34. 34.
    F. Montilla, E. Morallon, I. Duo, C. Comninellis, J. Vazquez, Platinum particles deposited on synthetic boron-doped diamond surfaces. Appl. Methanol Oxid. Electrochim. Acta 48(25), 3891–3897 (2003).  https://doi.org/10.1016/S0013-4686(03)00526-7CrossRefGoogle Scholar
  35. 35.
    G. Sine, I. Duo, B.E. Roustom, G. Foti, C. Comninellis, Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis. J. Appl. Electrochem. 36(8), 847–862 (2006).  https://doi.org/10.1007/s10800-006-9159-2CrossRefGoogle Scholar
  36. 36.
    O. Enea, B. Riedo, G. Dietler, AFM study of Pt clusters electrochemically deposited onto boron-doped diamond films. Nano Lett. 2(3), 241–244 (2002).  https://doi.org/10.1021/nl015666lCrossRefGoogle Scholar
  37. 37.
    I. Gonzalez-Gonzalez, D. Tryk, C.R. Cabrera, Polycrystalline boron-doped diamond films as supports for methanol oxidation electrocatalysts. Diam. Relat. Mater. 15(2), 275–278 (2006).  https://doi.org/10.1016/j.diamond.2005.08.037CrossRefGoogle Scholar
  38. 38.
    S. Hrapovic, Y. Liu, J.H. Luong, Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite. Anal. Chem. 79(2), 500–507 (2007).  https://doi.org/10.1021/ac061528aCrossRefGoogle Scholar
  39. 39.
    B. Rismetov, T.A. Ivandini, E. Saepudin, Y. Einaga, Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diam. Relat. Mater. 48(Supplement C), 88–95 (2014).  https://doi.org/10.1016/j.diamond.2014.07.003
  40. 40.
    Y. Hernández-Lebrón, C.R. Cabrera, Square wave voltammetry restructuring of platinum nanoparticle at boron doped diamond electrode for enhanced ammonia oxidation. J. Electroanal. Chem. 793(Supplement C), 174–83 (2017). DOI: https://doi.org/10.1016/j.jelechem.2016.12.036
  41. 41.
    Y. Hernández-Lebrón, L. Cunci, C.R. Cabrera, Ammonia oxidation at electrochemically platinum-modified microcrystalline and polycrystalline boron-doped diamond electrodes. Electrocatalysis 7(2), 184–192 (2016).  https://doi.org/10.1007/s12678-015-0295-5CrossRefGoogle Scholar
  42. 42.
    L. Hutton, M.E. Newton, P.R. Unwin, J.V. Macpherson, Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode. Anal. Chem. 81(3), 1023–1032 (2008).  https://doi.org/10.1021/ac8020906CrossRefGoogle Scholar
  43. 43.
    L.C.S. Figueiredo-Filho, E.R. Sartori, O. Fatibello-Filho, Electroanalytical determination of the linuron herbicide using a cathodically pretreated boron-doped diamond electrode: comparison with a boron-doped diamond electrode modified with platinum nanoparticles. Anal. Methods 7(2), 643–649 (2015).  https://doi.org/10.1039/C4AY02182GCrossRefGoogle Scholar
  44. 44.
    A.I. Căciuleanu, T. Spătaru, L. Preda, M. Anastasescu, P. Osiceanu, C. Munteanu, R.D. Bărăţoiu, A.A. Iovescu, N. Spătaru, Platinum–carbon electrocatalytic composites via liposome-directed electrodeposition at conductive diamond. Int. J. Hydrog. Energy 41(47), 22529–22537 (2016).  https://doi.org/10.1016/j.ijhydene.2016.05.226CrossRefGoogle Scholar
  45. 45.
    M. Medina-Sánchez, C.C. Mayorga-Martinez, T. Watanabe, T.A. Ivandini, Y. Honda, F. Pino, K. Nakata, A. Fujishima, Y. Einaga, A. Merkoçi, Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens. Bioelectron. 75, 365–374 (2016).  https://doi.org/10.1016/j.bios.2015.08.058CrossRefGoogle Scholar
  46. 46.
    G. Siné, D. Smida, M. Limat, G. Foti, C. Comninellis, Microemulsion synthesized pt∕ru∕sn nanoparticles on bdd for alcohol electro-oxidation. J. Electrochem. Soc. 154(2), B170–B174 (2007).  https://doi.org/10.1149/1.2400602CrossRefGoogle Scholar
  47. 47.
    T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide. Diam. Relat. Mater. 14(11), 2133–2138 (2005).  https://doi.org/10.1016/j.diamond.2005.08.022CrossRefGoogle Scholar
  48. 48.
    T.A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Electrochemical detection of arsenic (III) using iridium-implanted boron-doped diamond electrodes. Anal. Chem. 78(18), 6291–6298 (2006).  https://doi.org/10.1021/ac0519514CrossRefGoogle Scholar
  49. 49.
    K. Panda, K.J. Sankaran, E. Inami, Y. Sugimoto, N.H. Tai, I.-N. Lin, Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films. Appl. Phys. Lett. 105(16), 163109 (2014).  https://doi.org/10.1063/1.4898571CrossRefGoogle Scholar
  50. 50.
    K.J. Sankaran, P. Kalpataru, S. Balakrishnan, N.-H. Tai, I.N. Lin, Catalytically induced nanographitic phase by a platinum-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films. J. Mater. Chem. C 3(11), 2632–2641 (2015).  https://doi.org/10.1039/C4TC02334JCrossRefGoogle Scholar
  51. 51.
    K. Panda, E. Inami, Y. Sugimoto, K.J. Sankaran, I.N. Lin, Straight imaging and mechanism behind grain boundary electron emission in Pt-doped ultrananocrystalline diamond films. Carbon 111(Supplement C), 8–17 (2017).  https://doi.org/10.1016/j.carbon.2016.09.062
  52. 52.
    D.K. Belghiti, M. Zadeh-Habchi, E. Scorsone, P. Bergonzo, Boron doped diamond/metal nanoparticle catalysts hybrid electrode array for the detection of pesticides in tap water, in Proceedings of the 30th Anniversary Eurosensors Conference—Eurosensors, vol. 168, ed. by I. Barsony, Z. Zolnai, G. Battistig (Elsevier Science Bv, Amsterdam, 2016), pp. 428–31Google Scholar
  53. 53.
    X. Lyu, J.P. Hu, J.S. Foord, C.S. Lou, W.Q. Zhang, Synthesis and electrocatalytic performance of BDD-Supported platinum nanoparticles. J. Mater. Eng. Perform. 24(2), 1031–1037 (2015).  https://doi.org/10.1007/s11665-014-1317-9CrossRefGoogle Scholar
  54. 54.
    J. Wang, G.M. Swain, Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis preliminary studies of the oxygen-reduction reaction. J. Electrochem. Soc. 150(1), E24–E32 (2003).  https://doi.org/10.1149/1.1524612CrossRefGoogle Scholar
  55. 55.
    Bennett, J. A.; Show, Y.; Wang, S.; Swain, G. M., Pulsed galvanostatic deposition of Pt particles on microcrystalline and nanocrystalline diamond thin-film electrodes I. Characterization of as-deposited metal/diamond surfaces. J. Electrochem. Soc. 152(5), E184–E92 (2005).  https://doi.org/10.1149/1.1890745
  56. 56.
    G. Salazar-Banda, H. Suffredini, L. Avaca, Improved stability of PtOx sol-gel-modified diamond electrodes covered with a Nafion® film. J. Braz. Chem. Soc. 16(5), 903–906 (2005).  https://doi.org/10.1590/S0103-50532005000600003CrossRefGoogle Scholar
  57. 57.
    H.B. Suffredini, G.R. Salazar-Banda, S.T. Tanimoto, M.L. Calegaro, S.A. Machado, L.A. Avaca, AFM studies and electrochemical characterization of boron-doped diamond surfaces modified with metal oxides by the Sol-Gel method. J. Braz. Chem. Soc. 17(2), 257–264 (2006).  https://doi.org/10.1590/S0103-50532006000200007CrossRefGoogle Scholar
  58. 58.
    G.R. Salazar-Banda, H.B. Suffredini, L.A. Avaca, S.A.S. Machado, Methanol and ethanol electro-oxidation on Pt–SnO2 and Pt–Ta2O5 sol-gel-modified boron-doped diamond surfaces. Mater. Chem. Phys. 117(2–3), 434–442 (2009).  https://doi.org/10.1016/j.matchemphys.2009.06.027CrossRefGoogle Scholar
  59. 59.
    F. Gao, R. Thomann, C.E. Nebel, Aligned Pt-diamond core-shell nanowires for electrochemical catalysis. Electrochem. Commun. 50, 32–35 (2015).  https://doi.org/10.1016/j.elecom.2014.11.006CrossRefGoogle Scholar
  60. 60.
    J. Kim, Y.S. Chun, S.K. Lee, D.S. Lim, Improved electrode durability using a boron-doped diamond catalyst support for proton exchange membrane fuel cells. RSC Adv. 5(2), 1103–1108 (2015).  https://doi.org/10.1039/c4ra13389gCrossRefGoogle Scholar
  61. 61.
    K.E. Toghill, L. Xiao, G.G. Wildgoose, R.G. Compton, Electroanalytical determination of cadmium (II) and lead (II) using an antimony nanoparticle modified boron-doped diamond electrode. Electroanalysis 21(10), 1113–1118 (2009).  https://doi.org/10.1002/elan.200904547CrossRefGoogle Scholar
  62. 62.
    C.W. Foster, A.P. de Souza, J.P. Metters, M. Bertotti, C.E. Banks, Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. Analyst 140(22), 7598–7612 (2015).  https://doi.org/10.1039/C5AN01692DCrossRefGoogle Scholar
  63. 63.
    K.E. Toghill, G.G. Wildgoose, A. Moshar, C. Mulcahy, R.G. Compton, The fabrication and characterization of a bismuth nanoparticle modified boron doped diamond electrode and its application to the simultaneous determination of cadmium (II) and lead (II). Electroanalysis 20(16), 1731–1737 (2008).  https://doi.org/10.1002/elan.200804277CrossRefGoogle Scholar
  64. 64.
    A.O. Simm, X. Ji, C.E. Banks, M.E. Hyde, R.G. Compton, AFM studies of metal deposition: instantaneous nucleation and the growth of cobalt nanoparticles on boron-doped diamond electrodes. ChemPhysChem 7(3), 704–709 (2006).  https://doi.org/10.1002/cphc.200500557CrossRefGoogle Scholar
  65. 65.
    T.-L. Wee, B.D. Sherman, D. Gust, A.L. Moore, T.A. Moore, Y. Liu, J.C. Scaiano, Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 133(42), 16742–16745 (2011).  https://doi.org/10.1021/ja206280gCrossRefGoogle Scholar
  66. 66.
    N.R. Stradiotto, K.E. Toghill, L. Xiao, A. Moshar, R.G. Compton, The fabrication and characterization of a nickel nanoparticle modified boron doped diamond electrode for electrocatalysis of primary alcohol oxidation. Electroanalysis 21(24), 2627–2633 (2009).  https://doi.org/10.1002/elan.200900325CrossRefGoogle Scholar
  67. 67.
    S. Treetepvijit, A. Preechaworapun, N. Praphairaksit, S. Chuanuwatanakul, Y. Einaga, O. Chailapakul, Use of nickel implanted boron-doped diamond thin film electrode coupled to HPLC system for the determination of tetracyclines. Talanta 68(4), 1329–1335 (2006).  https://doi.org/10.1016/j.talanta.2005.07.047CrossRefGoogle Scholar
  68. 68.
    V. Sáez, J. González-García, F. Marken, Active catalysts of sonoelectrochemically prepared iron metal nanoparticles for the electroreduction of chloroacetates. Phys. Procedia 3(1), 105–109 (2010).  https://doi.org/10.1016/j.phpro.2010.01.015CrossRefGoogle Scholar
  69. 69.
    L.A. Hutton, M.E. Newton, P.R. Unwin, J.V. Macpherson, Factors controlling stripping voltammetry of lead at polycrystalline boron doped diamond electrodes: new insights from high-resolution microscopy. Anal. Chem. 83(3), 735–745 (2011).  https://doi.org/10.1021/ac101626sCrossRefGoogle Scholar
  70. 70.
    L.Y. Jiang, J.P. Hu, J.S. Foord, Electroanalysis of hydrogen peroxide at boron doped diamond electrode modified by silver nanoparticles and haemoglobin. Electrochim. Acta 176, 488–496 (2015).  https://doi.org/10.1016/j.electacta.2015.07.013CrossRefGoogle Scholar
  71. 71.
    S. Nantaphol, O. Chailapakul, W. Siangproh, A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection. Anal. Chim. Acta 891, 136–143 (2015).  https://doi.org/10.1016/j.aca.2015.08.007CrossRefGoogle Scholar
  72. 72.
    N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K.I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, C. Terashima, Boron-doped diamond semiconductor electrodes: efficient photoelectrochemical CO2 reduction through surface modification. Sci. Rep. 6, 9 (2016).  https://doi.org/10.1038/srep38010CrossRefGoogle Scholar
  73. 73.
    C.M. Welch, C.E. Banks, G. Richard, The detection of nitrate using in-situ copper nanoparticle deposition at a boron doped diamond electrode. Anal. Sci. 21(12), 1421–30 (2005).  https://doi.org/10.2116/analsci.21.1421
  74. 74.
    C.K. Mavrokefalos, G.W. Nelson, C.G. Poll, R.G. Compton, J.S. Foord, Electrochemical aspects of Pt–Cu and Cu modified boron-doped diamond. Physica Status Solidi A-Appl. Mat. 212(11), 2559–2567 (2015).  https://doi.org/10.1002/pssa.201532163CrossRefGoogle Scholar
  75. 75.
    K.R. Saravanan, M. Chandrasekaran, V. Suryanarayanan, Efficient electrocarboxylation of benzophenone on silver nanoparticles deposited boron doped diamond electrode. J. Electroanal. Chem. 757, 18–22 (2015).  https://doi.org/10.1016/j.jelechem.2015.08.033CrossRefGoogle Scholar
  76. 76.
    H.S. Panglipur, T.A. Ivandini, R. Wibowo, Y. Einaga, Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD). AIP Conf. Proc. 1729(1), 020047 (2016).  https://doi.org/10.1063/1.4946950CrossRefGoogle Scholar
  77. 77.
    N. Roy, Y. Shibano, C. Terashima, K. Katsumata, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, Ionic-liquid-assisted selective and controlled electrochemical CO2 reduction at Cu-modified boron-doped diamond electrode. ChemElectroChem 3(7), 1044–1047 (2016).  https://doi.org/10.1002/celc.201600105CrossRefGoogle Scholar
  78. 78.
    C.M. Welch, A.O. Simm, R.G. Compton, Oxidation of electrodeposited copper on boron doped diamond in acidic solution: manipulating the size of copper nanoparticles using voltammetry. Electroanalysis 18(10), 965–970 (2006).  https://doi.org/10.1002/elan.200603493CrossRefGoogle Scholar
  79. 79.
    B. El Roustom, G. Fóti, C. Comninellis, Preparation of gold nanoparticles by heat treatment of sputter deposited gold on boron-doped diamond film electrode. Electrochem. Commun. 7(4), 398–405 (2005).  https://doi.org/10.1016/j.elecom.2005.02.014CrossRefGoogle Scholar
  80. 80.
    I. Yagi, T. Ishida, K. Uosaki, Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochem. Commun. 6(8), 773–779 (2004).  https://doi.org/10.1016/j.elecom.2004.05.025CrossRefGoogle Scholar
  81. 81.
    Y. Ma, J. Liu, H. Li, Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A. Biosens. Bioelectron. 92(Supplement C), 21–5 (2017).  https://doi.org/10.1016/j.bios.2017.01.041
  82. 82.
    M. Li, G. Zhao, R. Geng, H. Hu, Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface. Bioelectrochemistry 74(1), 217–221 (2008).  https://doi.org/10.1016/j.bioelechem.2008.08.004CrossRefGoogle Scholar
  83. 83.
    R.-H. Tian, T.N. Rao, Y. Einaga, J.-F. Zhi, Construction of two-dimensional arrays gold nanoparticles monolayer onto boron-doped diamond electrode surfaces. Chem. Mater. 18(4), 939–945 (2006).  https://doi.org/10.1021/cm0519481CrossRefGoogle Scholar
  84. 84.
    T.A. Ivandini, Harmesa, E. Saepudin, Y. Einaga, Yeast-based biochemical oxygen demand sensors using Gold-modified boron-doped diamond electrodes. Anal. Sci. 31(7), 643–649 (2015).  https://doi.org/10.2116/analsci.31.643
  85. 85.
    W.T. Wahyuni, T.A. Ivandini, E. Saepudin, Y. Einaga, Development of neuraminidase detection using gold nanoparticles Boron-Doped diamond electrodes. Anal. Biochem. 497, 68–75 (2016).  https://doi.org/10.1016/j.ab.2015.12.003CrossRefGoogle Scholar
  86. 86.
    T.A. Ivandini, E. Saepudin, H. Wardah, Harmesa, N. Dewangga, Y. Einaga, Development of a biochemical oxygen demand sensor using Gold-Modified boron doped diamond electrodes. Anal. Chem. 84(22), 9825–9832 (2012).  https://doi.org/10.1021/ac302090y
  87. 87.
    Y. Zhang, V. Suryanarayanan, I. Nakazawa, S. Yoshihara, T. Shirakashi, Electrochemical behavior of Au nanoparticle deposited on as-grown and O-terminated diamond electrodes for oxygen reduction in alkaline solution. Electrochim. Acta 49(28), 5235–5240 (2004).  https://doi.org/10.1016/j.electacta.2004.07.005CrossRefGoogle Scholar
  88. 88.
    L. Rassaei, M. Sillanpää, R.W. French, R.G. Compton, F. Marken, Arsenite determination in phosphate media at electroaggregated gold nanoparticle deposits. Electroanalysis 20(12), 1286–1292 (2008).  https://doi.org/10.1002/elan.200804226CrossRefGoogle Scholar
  89. 89.
    J. Svanberg-Larsson, G.W. Nelson, S.E. Steinvall, B.F. Leo, E. Brooke, D.J. Payne, J.S. Foord, A comparison of explicitly-terminated diamond electrodes decorated with gold nanoparticles. Electroanalysis 28(1), 88–95 (2016).  https://doi.org/10.1002/elan.201500442CrossRefGoogle Scholar
  90. 90.
    K.B. Holt, G. Sabin, R.G. Compton, J.S. Foord, F. Marken, Reduction of tetrachloroaurate(III) at Boron-Doped diamond electrodes: gold deposition versus gold colloid formation. Electroanalysis 14(12), 797–803 (2002).  https://doi.org/10.1002/1521-4109(200206)14:12%3c797:AID-ELAN797%3e3.0.CO;2-MCrossRefGoogle Scholar
  91. 91.
    Á.I. López-Lorente, J. Izquierdo, C. Kranz, B. Mizaikoff, Boron-doped diamond modified with gold nanoparticles for the characterization of bovine serum albumin protein. Vib. Spectrosc. 91(Supplement C), 147–56 (2017).  https://doi.org/10.1016/j.vibspec.2016.10.010
  92. 92.
    S. Chai, Y. Wang, Y.-N. Zhang, M. Liu, Y. Wang, G. Zhao, Selective electrocatalytic degradation of odorous mercaptans derived from S-Au bond recognition on a dendritic gold/boron-doped diamond composite electrode. Environ. Sci. Technol. 51(14), 8067–8076 (2017).  https://doi.org/10.1021/acs.est.7b00393CrossRefGoogle Scholar
  93. 93.
    C. Batchelor-McAuley, C.E. Banks, A.O. Simm, T.G. Jones, R.G. Compton, The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst 131(1), 106–110 (2006).  https://doi.org/10.1039/B513751ACrossRefGoogle Scholar
  94. 94.
    C. Batchelor-McAuley, C.E. Banks, A.O. Simm, T.G. Jones, R.G. Compton, Nano-Electrochemical detection of hydrogen or protons using palladium nanoparticles: distinguishing surface and bulk hydrogen. ChemPhysChem 7(5), 1081–1085 (2006).  https://doi.org/10.1002/cphc.200500571CrossRefGoogle Scholar
  95. 95.
    C.K. Mavrokefalos, M. Hasan, W. Khunsin, M. Schmidt, S.A. Maier, J.F. Rohan, R.G. Compton, J.S. Foord, Electrochemically modified boron-doped diamond electrode with Pd and Pd-Sn nanoparticles for ethanol electrooxidation. Electrochimica Acta 243(Supplement C), 310–319 (2017).  https://doi.org/10.1016/j.electacta.2017.05.039
  96. 96.
    G. Siné, G. Foti, C. Comninellis, Boron-doped diamond (BDD)-supported Pt/Sn nanoparticles synthesized in microemulsion systems as electrocatalysts of ethanol oxidation. J. Electroanal. Chem. 595(2), 115–124 (2006).  https://doi.org/10.1016/j.jelechem.2006.07.012CrossRefGoogle Scholar
  97. 97.
    G. Siné, C. Comninellis, Nafion®-assisted deposition of microemulsion-synthesized platinum nanoparticles on BDD: activation by electrogenerated OH radicals. Electrochim. Acta 50(11), 2249–2254 (2005).  https://doi.org/10.1016/j.electacta.2004.10.008CrossRefGoogle Scholar
  98. 98.
    X. Lu, J. Hu, J.S. Foord, Q. Wang, Electrochemical deposition of Pt–Ru on diamond electrodes for the electrooxidation of methanol. J. Electroanal. Chem. 654(1), 38–43 (2011).  https://doi.org/10.1016/j.jelechem.2011.01.034CrossRefGoogle Scholar
  99. 99.
    B. El Roustom, G. Sine, G. Foti, C. Comninellis, A novel method for the preparation of bi-metallic (Pt–Au) nanoparticles on boron doped diamond (BDD) substrate: application to the oxygen reduction reaction. J. Appl. Electrochem. 37(11), 1227–1236 (2007).  https://doi.org/10.1007/s10800-007-9359-4CrossRefGoogle Scholar
  100. 100.
    S. Nantaphol, T. Watanabe, N. Nomura, W. Siangproh, O. Chailapakul, Y. Einaga, Bimetallic Pt–Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens. Bioelectron. 98, 76–82 (2017).  https://doi.org/10.1016/j.bios.2017.06.034CrossRefGoogle Scholar
  101. 101.
    S. Ferro, A. De Battisti, Electrocatalysis and chlorine evolution reaction at ruthenium dioxide deposited on conductive diamond. J. Phys. Chem. B 106(9), 2249–2254 (2002).  https://doi.org/10.1021/jp012195iCrossRefGoogle Scholar
  102. 102.
    T. Spătaru, L. Preda, P. Osiceanu, C. Munteanu, M. Marcu, C. Lete, N. Spătaru, A. Fujishima, Electrochemical deposition of Pt–RuO (x) a < …nH(2)O composites on conductive diamond and its application to methanol oxidation in acidic media. Electrocatalysis 7(2), 140–148 (2016).  https://doi.org/10.1007/s12678-015-0292-8
  103. 103.
    L. Chen, J. Hu, J.S. Foord, Electrodeposition of a Pt–PrO2 − x electrocatalyst on diamond electrodes for the oxidation of methanol. Physica Status Solidi (a) 209(9), 1792–1796 (2012).  https://doi.org/10.1002/pssa.201200049
  104. 104.
    M. Braiek, Y. Yang, C. Farre, C. Chaix, F. Bessueille, A. Baraket, A. Errachid, A.D. Zhang, N. Jaffrezic-Renault, Boron-doped diamond electrodes modified with Fe3O4@Au magnetic nanocomposites as sensitive platform for detection of a cancer biomarker, Interleukin-8. Electroanalysis 28(8), 1810–1816 (2016).  https://doi.org/10.1002/elan.201600060CrossRefGoogle Scholar
  105. 105.
    C. Terashima, T.N. Rao, B.V. Sarada, N. Spataru, A. Fujishima, Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications. J. Electroanal. Chem. 544, 65–74 (2003).  https://doi.org/10.1016/S0022-0728(03)00066-4CrossRefGoogle Scholar
  106. 106.
    F. Marken, A.S. Bhambra, D.-H. Kim, R.J. Mortimer, S.J. Stott, Electrochemical reactivity of TiO2 nanoparticles adsorbed onto boron-doped diamond surfaces. Electrochem. Commun. 6(11), 1153–1158 (2004).  https://doi.org/10.1016/j.elecom.2004.09.006CrossRefGoogle Scholar
  107. 107.
    T. Spătaru, L. Preda, C. Munteanu, A.I. Căciuleanu, N. Spătaru, A. Fujishima, Influence of boron-doped diamond surface termination on the characteristics of titanium dioxide anodically deposited in the presence of a surfactant. J. Electrochem. Soc. 162(8), H535–H540 (2015).  https://doi.org/10.1149/2.0741508jesCrossRefGoogle Scholar
  108. 108.
    F. Espinola-Portilla, R. Navarro-Mendoza, S. Gutiérrez-Granados, U. Morales-Muñoz, E. Brillas-Coso, J.M. Peralta-Hernández, A simple process for the deposition of TiO2 onto BDD by electrophoresis and its application to the photoelectrocatalysis of Acid Blue 80 dye. J. Electroanal. Chem. 802(Supplement C), 57–63. (2017).  https://doi.org/10.1016/j.jelechem.2017.08.041
  109. 109.
    K.J. McKenzie, F. Marken, Electrochemical characterization of hydrous ruthenium oxide nanoparticle decorated boron-doped diamond electrodes. Electrochem. Solid-State Lett. 5(9), E47–E50 (2002).  https://doi.org/10.1149/1.1497515CrossRefGoogle Scholar
  110. 110.
    G.C. Sedenho, J.L. da Silva, M.A. Beluomini, A.C. de Sá, N.R. Stradiotto, Determination of electroactive organic acids in sugarcane vinasse by high performance anion-exchange chromatography with pulsed amperometric detection using a nickel nanoparticle modified boron-doped diamond. Energy Fuels 31(3), 2865–2870 (2017).  https://doi.org/10.1021/acs.energyfuels.6b02783CrossRefGoogle Scholar
  111. 111.
    G.C. Sedenho, P.T. Lee, H.S. Toh, C. Salter, C. Johnston, N.R. Stradiotto, R.G. Compton, Nanoelectrocatalytic oxidation of lactic acid using nickel nanoparticles. J. Phys. Chem. C 119(12), 6896–6905 (2015).  https://doi.org/10.1021/acs.jpcc.5b00335CrossRefGoogle Scholar
  112. 112.
    A.J. Saterlay, S.J. Wilkins, K.B. Holt, J.S. Foord, R.G. Compton, F. Marken, Lead dioxide deposition and electrocatalysis at highly boron-doped diamond electrodes in the presence of ultrasound. J. Electrochem. Soc. 148(2), E66–E72 (2001).  https://doi.org/10.1149/1.1339874CrossRefGoogle Scholar
  113. 113.
    C.K. Mavrokefalos, M. Hasan, J.F. Rohan, R.G. Compton, J.S. Foord, Electrochemically deposited Cu2O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation. Appl. Surf. Sci. 408, 125–134 (2017).  https://doi.org/10.1016/j.apsusc.2017.02.148CrossRefGoogle Scholar
  114. 114.
    P. Gan, J.S. Foord, R.G. Compton, Surface modification of boron-doped diamond with microcrystalline copper phthalocyanine: oxygen reduction catalysis. ChemistryOpen 4(5), 606–612 (2015).  https://doi.org/10.1002/open.201500075CrossRefGoogle Scholar
  115. 115.
    F. Shang, J.D. Glennon, J.H. Luong, Glucose oxidase entrapment in an electropolymerized poly (tyramine) film with sulfobutylether-β-cyclodextrin on platinum nanoparticle modified boron-doped diamond electrode. J. Phys. Chem. C 112(51), 20258–20263 (2008).  https://doi.org/10.1021/jp807482aCrossRefGoogle Scholar
  116. 116.
    M.-J. Song, J.H. Kim, S.K. Lee, J.-H. Lee, D.S. Lim, S.W. Hwang, D. Whang, Pt-polyaniline nanocomposite on boron-doped diamond electrode for amperometic biosensor with low detection limit. Microchim. Acta 171(3–4), 249–255 (2010).  https://doi.org/10.1007/s00604-010-0432-zCrossRefGoogle Scholar
  117. 117.
    H.F. Cui, Y.F. Bai, W.W. Wu, X.Y. He, J.H.T. Luong, Modification with mesoporous platinum and poly(pyrrole-3-carboxylic acid)-based copolymer on boron-doped diamond for nonenzymatic sensing of hydrogen peroxide. J. Electroanal. Chem. 766, 52–59 (2016).  https://doi.org/10.1016/j.jelechem.2016.01.026CrossRefGoogle Scholar
  118. 118.
    M.-J. Song, S.-K. Lee, D.-S. Lim, Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal. Sci. 28(6), 583–587 (2012).  https://doi.org/10.2116/analsci.28.583CrossRefGoogle Scholar
  119. 119.
    Z. Deng, H. Long, Q. Wei, Z. Yu, B. Zhou, Y. Wang, L. Zhang, S. Li, L. Ma, Y. Xie, J. Min, High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode. Sens. Actuators B: Chem. 242(Supplement C), 825–34 (2017).  https://doi.org/10.1016/j.snb.2016.09.176
  120. 120.
    I. Duo, S. Ferro, A. De Battisti, C. Comninellis, Conductive metal-oxide nanoparticles on synthetic boron-doped diamond surfaces, in Catalysis and Electrocatalysis at Nanoparticle Surfaces, ed. by A. Wieckowski, E.R. Savinova, C.G. Vayenas (Marcel Dekker Inc, NY, 2003), pp. 877–906Google Scholar
  121. 121.
    K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, Y.-E. Sung, H.-Y. Ha, S.-A. Hong, H. Kim, A. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 106(8), 1869–1877 (2002).  https://doi.org/10.1021/jp013168vCrossRefGoogle Scholar
  122. 122.
    M.A. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60(3), 267–73 (1975).  https://doi.org/10.1016/S0022-0728(75)80261-0
  123. 123.
    I. González-González, E.R. Fachini, M.A. Scibioh, D.A. Tryk, M. Tague, H.C.D. Abruña, C.R. Cabrera, Facet-selective platinum electrodeposition at free-standing polycrystalline boron-doped diamond films. Langmuir 25(17), 10329–10336 (2009).  https://doi.org/10.1021/la8035055
  124. 124.
    T. Kondo, S. Aoshima, K. Hirata, K. Honda, Y. Einaga, A. Fujishima, T. Kawai, Crystal-Face-Selective Adsorption of Au Nanoparticles onto Polycrystalline diamond surfaces. Langmuir 24(14), 7545–7548 (2008).  https://doi.org/10.1021/la800782rCrossRefGoogle Scholar
  125. 125.
    M. Wei, L.G. Sun, Z.Y. Xie, J.F. Zhii, A. Fujishima, Y. Einaga, D.G. Fu, X.M. Wang, Z.Z. Gu, Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids. Adv. Func. Mater. 18(9), 1414–1421 (2008).  https://doi.org/10.1002/adfm.200701099CrossRefGoogle Scholar
  126. 126.
    M. Wei, Z. Xie, L. Sun, Z.Z. Gu, Electrochemical properties of a boron-doped diamond electrode modified with gold/polyelectrolyte hollow spheres. Electroanalysis 21(2), 138–143 (2009).  https://doi.org/10.1002/elan.200804411CrossRefGoogle Scholar
  127. 127.
    M. Osawa, K.-I. Ataka, K. Yoshii, Y. Nishikawa, Surface-Enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47(9), 1497–1502 (1993).  https://doi.org/10.1366/0003702934067478CrossRefGoogle Scholar
  128. 128.
    J.K. Zak, J.E. Butler, G.M. Swain, Diamond optically transparent electrodes: demonstration of concept with ferri/ferrocyanide and methyl viologen. Anal. Chem. 73(5), 908–914 (2001).  https://doi.org/10.1021/ac001257iCrossRefGoogle Scholar
  129. 129.
    H.B. Martin, P.W. Morrison, Application of a diamond thin film as a transparent electrode for in situ infrared spectroelectrochemistry. Electrochem. Solid-State Lett. 4(4), E17–E20 (2001).  https://doi.org/10.1149/1.1353162CrossRefGoogle Scholar
  130. 130.
    D. Neubauer, J. Scharpf, A. Pasquarelli, B. Mizaikoff, C. Kranz, Combined in situ atomic force microscopy and infrared attenuated total reflection spectroelectrochemistry. Analyst 138(22), 6746–6752 (2013).  https://doi.org/10.1039/C3AN01169KCrossRefGoogle Scholar
  131. 131.
    J. Izquierdo, B. Mizaikoff, C. Kranz, Surface-enhanced infrared spectroscopy on boron-doped diamond modified with gold nanoparticles for spectroelectrochemical analysis. Physica Status Solidi (a) 213(8), 2056–2062 (2016).  https://doi.org/10.1002/pssa.201600222
  132. 132.
    J. Hu, X. Lu, J. Foord, Nanodiamond pretreatment for the modification of diamond electrodes by platinum nanoparticles. Electrochem. Commun. 12(5), 676–679 (2010).  https://doi.org/10.1016/j.elecom.2010.03.004CrossRefGoogle Scholar
  133. 133.
    Wang, J.; Swain, G.; Tachibana, T.; Kobashi, K., The incorporation of Pt nanoparticles into boron-doped diamond thin-films: dimensionally stable catalytic electrodes. J. New Mater. Electrochem. Syst. 3(1), 75–82 (2000)Google Scholar
  134. 134.
    J. Wang, G.M. Swain, T. Tachibana, K. Kobashi, Electrocatalytic diamond thin film electrodes with incorporated PT. Electrochem. Soc. Inc: Pennington 2002, 157–167 (2001)Google Scholar
  135. 135.
    N.R. Wilson, S.L. Clewes, M.E. Newton, P.R. Unwin, J.V. Macpherson, Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes. J. Phys. Chem. B 110(11), 5639–5646 (2006).  https://doi.org/10.1021/jp0547616CrossRefGoogle Scholar
  136. 136.
    F. Bottari, K. De Wael, Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules. J. Electroanal. Chem. 801(Supplement C), 521–526 (2017).  https://doi.org/10.1016/j.jelechem.2017.07.053
  137. 137.
    K.P. Loh, S.L. Zhao, W. De Zhang, Diamond and carbon nanotube glucose sensors based on electropolymerization. Diam. Relat. Mater. 13(4), 1075–1079 (2004).  https://doi.org/10.1016/j.diamond.2003.11.009CrossRefGoogle Scholar
  138. 138.
    C. Martínez-Huitle, N.S. Fernandes, S. Ferro, A. De Battisti, M. Quiroz, Fabrication and application of Nafion®-modified boron-doped diamond electrode as sensor for detecting caffeine. Diam. Relat. Mater. 19(10), 1188–1193 (2010).  https://doi.org/10.1016/j.diamond.2010.05.004CrossRefGoogle Scholar
  139. 139.
    P.R. Roy, M.S. Saha, T. Okajima, S.G. Park, A. Fujishima, T. Ohsaka, Selective detection of dopamine and its metabolite, DOPAC, in the presence of ascorbic acid using diamond electrode modified by the polymer film. Electroanalysis 16(21), 1777–1784 (2004).  https://doi.org/10.1002/elan.200303026CrossRefGoogle Scholar
  140. 140.
    A.O. Simm, C.E. Banks, S. Ward-Jones, T.J. Davies, N.S. Lawrence, T.G. Jones, L. Jiang, R.G. Compton, Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu) via electrodeposition. Analyst 130(9), 1303–1311 (2005).  https://doi.org/10.1039/b506956dCrossRefGoogle Scholar
  141. 141.
    A. Salimi, M.E. Hyde, C.E. Banks, R.G. Compton, Boron doped diamond electrode modified with iridium oxide for amperometic detection of ultra trace amounts of arsenic (III). Analyst 129(1), 9–14 (2004).  https://doi.org/10.1039/B312285ACrossRefGoogle Scholar
  142. 142.
    N. Vinokur, B. Miller, Y. Avyigal, R. Kalish, Cathodic and anodic deposition of mercury and silver at boron-doped diamond electrodes. J. Electrochem. Soc. 146(1), 125–130 (1999).  https://doi.org/10.1149/1.1391574CrossRefGoogle Scholar
  143. 143.
    H. Terashima, T. Tsuji, Adsorption of bovine serum albumin onto mica surfaces studied by a direct weighing technique. Colloids Surf. B 27(2), 115–122 (2003).  https://doi.org/10.1016/S0927-7765(02)00044-9CrossRefGoogle Scholar
  144. 144.
    H.E.M. Hussein, H. Amari, J.V. Macpherson, Electrochemical synthesis of nanoporous platinum nanoparticles using laser pulse heating: application to methanol oxidation. ACS Catal. 7(10), 7388–7398 (2017).  https://doi.org/10.1021/acscatal.7b02701CrossRefGoogle Scholar
  145. 145.
    M. Limat, B. El Roustom, H. Jotterand, G. Fóti, C. Comninellis, Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode. Electrochim. Acta 54(9), 2410–2416 (2009).  https://doi.org/10.1016/j.electacta.2008.02.050CrossRefGoogle Scholar
  146. 146.
    C. Zhang, L. Gu, Y. Lin, Y. Wang, D. Fu, Z. Gu, Degradation of X-3B dye by immobilized TiO2 photocatalysis coupling anodic oxidation on BDD electrode. J. Photochem. Photobiol. A 207(1), 66–72 (2009).  https://doi.org/10.1016/j.jphotochem.2009.01.014CrossRefGoogle Scholar
  147. 147.
    F. Celii, J. Butler, Diamond chemical vapor deposition. Annu. Rev. Phys. Chem. 42(1), 643–684 (1991).  https://doi.org/10.1146/annurev.pc.42.100191.003235CrossRefGoogle Scholar
  148. 148.
    J.H. Luong, K.B. Male, J.D. Glennon, Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134(10), 1965–1979 (2009).  https://doi.org/10.1039/B910206JCrossRefGoogle Scholar
  149. 149.
    K.B. Holt, A.J. Bard, Y. Show, G.M. Swain, Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels. J. Phys. Chem. B 108, 15117–15127 (2004).  https://doi.org/10.1021/jp048222xCrossRefGoogle Scholar
  150. 150.
    H. Notsu, I. Yagi, T. Tatsuma, D.A. Tryk, A. Fujishima, Introduction of oxygen-containing functional groups onto diamond electrode surfaces by oxygen plasma and anodic polarization. Electrochem. Solid-State Lett. 2(10), 522–524 (1999).  https://doi.org/10.1149/1.1390890CrossRefGoogle Scholar
  151. 151.
    D.W. Arrigan, Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12), 1157–1165 (2004).  https://doi.org/10.1039/b415395mCrossRefGoogle Scholar
  152. 152.
    F. Maillard, M. Eikerling, O. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss. 125, 357–377 (2004).  https://doi.org/10.1039/b303911kCrossRefGoogle Scholar
  153. 153.
    S.R. Belding, E.J. Dickinson, R.G. Compton, Diffusional cyclic voltammetry at electrodes modified with random distributions of electrocatalytic nanoparticles: theory. J. Phys. Chem. C 113(25), 11149–11156 (2009).  https://doi.org/10.1021/jp901664pCrossRefGoogle Scholar
  154. 154.
    T. Kondo, T. Morimura, T. Tsujimoto, T. Aikawa, M. Yuasa, Platinum nanoparticle-embedded porous diamond spherical particles as an active and stable heterogeneous catalyst. Sci Rep. 7, 10 (2017).  https://doi.org/10.1038/s41598-017-08949-0CrossRefGoogle Scholar
  155. 155.
    U. Griesbach, D. Zollinger, H. Pütter, C. Comninellis, Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale⋆. J. Appl. Electrochem. 35(12), 1265–1270 (2005).  https://doi.org/10.1007/s10800-005-9038-2CrossRefGoogle Scholar
  156. 156.
    D. Bavykin, E. Milsom, F. Marken, D. Kim, D. Marsh, D. Riley, F. Walsh, K. El-Abiary, A. Lapkin, A novel cation-binding TiO2 nanotube substrate for electro-and bioelectro-catalysis. Electrochem. Commun. 7(10), 1050–1058 (2005).  https://doi.org/10.1016/j.elecom.2005.07.010CrossRefGoogle Scholar
  157. 157.
    M.E. Hyde, R.G. Compton, A review of the analysis of multiple nucleation with diffusion controlled growth. J. Electroanal. Chem. 549, 1–12 (2003).  https://doi.org/10.1016/S0022-0728(03)00250-XCrossRefGoogle Scholar
  158. 158.
    D. Grujicic, B. Pesic, Iron nucleation mechanisms on vitreous carbon during electrodeposition from sulfate and chloride solutions. Electrochim. Acta 50(22), 4405–4418 (2005).  https://doi.org/10.1016/j.electacta.2005.02.013CrossRefGoogle Scholar
  159. 159.
    D. Grujicic, B. Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim. Acta 50(22), 4426–4443 (2005).  https://doi.org/10.1016/j.electacta.2005.02.012CrossRefGoogle Scholar
  160. 160.
    S. Jones, K. Tedsree, M. Sawangphruk, J.S. Foord, J. Fisher, D. Thompsett, S.C.E. Tsang, Promotion of direct methanol electro-oxidation by Ru Terraces on Pt by using a reversed spillover mechanism. ChemCatChem 2(9), 1089–1095 (2010).  https://doi.org/10.1002/cctc.201000106CrossRefGoogle Scholar
  161. 161.
    M.E. Hyde, R. Jacobs, R.G. Compton, In situ AFM studies of metal deposition. J. Phys. Chem. B 106(43), 11075–11080 (2002).  https://doi.org/10.1021/jp0213607CrossRefGoogle Scholar
  162. 162.
    B. Scharifker, J. Mostany, Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site. J. Electroanal. Chem. Interfacial Electrochem. 177(1–2), 13–23 (1984).  https://doi.org/10.1016/0022-0728(84)80207-7
  163. 163.
    Z.D. Wei, S.H. Chan, Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. J. Electroanal. Chem. 569(1), 23–33 (2004).  https://doi.org/10.1016/j.jelechem.2004.01.034CrossRefGoogle Scholar
  164. 164.
    M. Mavrikakis, P. Stoltze, J.K. Nørskov, Making gold less noble. Catal. Lett. 64(2), 101–106 (2000).  https://doi.org/10.1023/A:1019028229377CrossRefGoogle Scholar
  165. 165.
    A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. Barnett, U. Landman, When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103(48), 9573–9578 (1999).  https://doi.org/10.1021/jp9935992CrossRefGoogle Scholar
  166. 166.
    M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383), 1647–1650 (1998).  https://doi.org/10.1126/science.281.5383.1647
  167. 167.
    O. Niwa, Electroanalytical chemistry with carbon film electrodes and micro and nano-structured carbon film-based electrodes. Bull. Chem. Soc. Jpn. 78(4), 555–571 (2005).  https://doi.org/10.1246/bcsj.78.555CrossRefGoogle Scholar
  168. 168.
    I. Duo, C. Comninellis, W. Haenni, Perret A, in Deposition of Nanoparticles of Iridium Dioxyde on a Synthetic Boron-Doped Diamond Surface, Diamond Materials Vii, Proceedings, Pennington, ed. by G.M. Swain, J.L. Davidson, J.C. Angus, T. Ando, W.D. Brown (Electrochemical Society Inc, Pennington, 2001), pp. 147–156Google Scholar
  169. 169.
    M.E. Hyde, C.E. Banks, R.G. Compton, Anodic stripping voltammetry: an AFM study of some problems and limitations. Electroanalysis 16(5), 345–354 (2004).  https://doi.org/10.1002/elan.200302863CrossRefGoogle Scholar
  170. 170.
    J. Barton, J.M. Bockris, The electrolytic growth of dendrites from ionic solutions, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, pp. 485–505 (1962)Google Scholar
  171. 171.
    M. Paunovic, M. Schlesinger, Kinetics and mechanism of electrodeposition, in Fundamentals of Electrochemical Deposition, 2nd edn. (Wiley, Hoboken, NJ, 2006), pp. 77–112Google Scholar
  172. 172.
    I. González-González, Y. Hernández-Lebrón, E. Nicolau, C.R. Cabrera, Ammonia oxidation enhancement at square-wave treated platinum particle modified boron-doped diamond electrodes. ECS Trans. 33(1), 201–209 (2010).  https://doi.org/10.1149/1.3484517CrossRefGoogle Scholar
  173. 173.
    Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, S.-G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40(7), 4167–4185 (2011).  https://doi.org/10.1039/C0CS00176GCrossRefGoogle Scholar
  174. 174.
    R. Lam, M. Chen, E. Pierstorff, H. Huang, E. Osawa, D. Ho, Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2(10), 2095–2102 (2008).  https://doi.org/10.1021/nn800465xCrossRefGoogle Scholar
  175. 175.
    B. Guan, F. Zou, J. Zhi, Nanodiamond as the pH-Responsive vehicle for an anticancer drug. Small 6(14), 1514–1519 (2010).  https://doi.org/10.1002/smll.200902305CrossRefGoogle Scholar
  176. 176.
    A. Thalhammer, R.J. Edgington, L.A. Cingolani, R. Schoepfer, R.B. Jackman, The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials 31(8), 2097–2104 (2010).  https://doi.org/10.1016/j.biomaterials.2009.11.109CrossRefGoogle Scholar
  177. 177.
    Y. Wang, J. Zhi, Y. Liu, J. Zhang, Electrochemical detection of surfactant cetylpyridinium bromide using boron-doped diamond as electrode. Electrochem. Commun. 13(1), 82–85 (2011).  https://doi.org/10.1016/j.elecom.2010.11.019CrossRefGoogle Scholar
  178. 178.
    R.S. Lewis, T. Ming, J.F. Wacker, E. Steel, Interstellar diamonds in meteorites. Nature 326, 160–162 (1987).  https://doi.org/10.1038/326160a0CrossRefGoogle Scholar
  179. 179.
    V. Danilenko, Shock-wave sintering of nanodiamonds. Phys. Solid State 46(4), 711–715 (2004).  https://doi.org/10.1134/1.1711456CrossRefGoogle Scholar
  180. 180.
    S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006).  https://doi.org/10.1021/ja063303nCrossRefGoogle Scholar
  181. 181.
    A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu, Deagglomeration and functionalisation of detonation diamond. Physica Status Solidi (a) 204(9), 2881–2887 (2007).  https://doi.org/10.1002/pssa.200776330
  182. 182.
    B. Palosz, C. Pantea, E. Grzanka, S. Stelmakh, T. Proffen, T. Zerda, W. Palosz, Investigation of relaxation of nanodiamond surface in real and reciprocal spaces. Diam. Relat. Mater. 15(11), 1813–1817 (2006).  https://doi.org/10.1016/j.diamond.2006.09.001CrossRefGoogle Scholar
  183. 183.
    Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, Alkyl-, Amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 16(20), 3924–3930 (2004).  https://doi.org/10.1021/cm048875qCrossRefGoogle Scholar
  184. 184.
    I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State 46(4), 636–643 (2004).  https://doi.org/10.1134/1.1711440CrossRefGoogle Scholar
  185. 185.
    A. Härtl, E. Schmich, J.A. Garrido, J. Hernando, S.C. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, M. Stutzmann, Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 3(10), 736–742 (2004).  https://doi.org/10.1038/nmat1204CrossRefGoogle Scholar
  186. 186.
    F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.P. Boudou, A. Krueger, J. Wrachtrup, Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7(12), 3588–3591 (2007).  https://doi.org/10.1021/nl0716303CrossRefGoogle Scholar
  187. 187.
    P.-H. Chung, E. Perevedentseva, C.-L. Cheng, The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci. 601(18), 3866–3870 (2007).  https://doi.org/10.1016/j.susc.2007.04.150CrossRefGoogle Scholar
  188. 188.
    O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C.E. Nebel, Size-dependent reactivity of diamond nanoparticles. ACS Nano 4(8), 4824–4830 (2010).  https://doi.org/10.1021/nn100748kCrossRefGoogle Scholar
  189. 189.
    V. Bondar’, I. Pozdnyakova, A. Puzyr’, Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State 46(4), 758–760 (2004).  https://doi.org/10.1134/1.1711468
  190. 190.
    C. Nebel, H. Kato, B. Rezek, D. Shin, D. Takeuchi, H. Watanabe, T. Yamamoto, Electrochemical properties of undoped hydrogen terminated CVD diamond. Diam. Relat. Mater. 15(2), 264–268 (2006).  https://doi.org/10.1016/j.diamond.2005.08.012CrossRefGoogle Scholar
  191. 191.
    D. Shin, H. Watanabe, C.E. Nebel, Insulator−Metal transition of intrinsic diamond. J. Am. Chem. Soc. 127(32), 11236–11237 (2005).  https://doi.org/10.1021/ja052834tCrossRefGoogle Scholar
  192. 192.
    V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, G.U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318(5855), 1424–1430 (2007).  https://doi.org/10.1126/science.1148841CrossRefGoogle Scholar
  193. 193.
    K.B. Holt, D.J. Caruana, E.J. Millán-Barrios, Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J. Am. Chem. Soc. 131(32), 11272–11273 (2009).  https://doi.org/10.1021/ja902216nCrossRefGoogle Scholar
  194. 194.
    T.S. Varley, M. Hirani, G. Harrison, K.B. Holt, Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. Faraday Discuss. 172, 349–364 (2014).  https://doi.org/10.1039/C4FD00041BCrossRefGoogle Scholar
  195. 195.
    A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17(45), 4811–4819 (2007).  https://doi.org/10.1039/B710189ACrossRefGoogle Scholar
  196. 196.
    T. Brülle, A. Denisenko, H. Sternschulte, U. Stimming, Catalytic activity of platinum nanoparticles on highly boron-doped and 100-oriented epitaxial diamond towards HER and HOR. Phys. Chem. Chem. Phys. 13(28), 12883–12891 (2011).  https://doi.org/10.1039/C1CP20852GCrossRefGoogle Scholar
  197. 197.
    K.B. Holt, CHAPTER 6 Electrochemistry of Nanodiamond Particles (The Royal Society of Chemistry, In Nanodiamond, 2014), pp. 128–150Google Scholar
  198. 198.
    I.A. Novoselova, E.N. Fedoryshena, É.V. Panov, A.A. Bochechka, L.A. Romanko, Electrochemical properties of compacts of nano-and microdisperse diamond powders in aqueous electrolytes. Phys. Solid State 46(4), 748–750 (2004).  https://doi.org/10.1134/1.1711465CrossRefGoogle Scholar
  199. 199.
    L.H. Chen, J.B. Zang, Y.H. Wang, L.Y. Bian, Electrochemical oxidation of nitrite on nanodiamond powder electrode. Electrochim. Acta 53(8), 3442–3445 (2008).  https://doi.org/10.1016/j.electacta.2007.12.023CrossRefGoogle Scholar
  200. 200.
    J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, S. Ren, X. Qu, Surface modification and electrochemical behaviour of undoped nanodiamonds. Electrochim. Acta 72, 68–73 (2012).  https://doi.org/10.1016/j.electacta.2012.03.169CrossRefGoogle Scholar
  201. 201.
    I. Shpilevaya, J.S. Foord, Electrochemistry of methyl viologen and anthraquinonedisulfonate at diamond and diamond powder electrodes: the influence of surface chemistry. Electroanalysis 26(10), 2088–2099 (2014).  https://doi.org/10.1002/elan.201400310CrossRefGoogle Scholar
  202. 202.
    E. Peltola, N. Wester, K.B. Holt, L.-S. Johansson, J. Koskinen, V. Myllymäki, T. Laurila, Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability. Biosens. Bioelectron. 88(Supplement C), 273–282 (2017).  https://doi.org/10.1016/j.bios.2016.08.055
  203. 203.
    M. Briones, E. Casero, M.D. Petit-Dominguez, M.A. Ruiz, A.M. Parra-Alfambra, F. Pariente, E. Lorenzo, L. Vazquez, Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens. Bioelectron. 68, 521–528 (2015).  https://doi.org/10.1016/j.bios.2015.01.044CrossRefGoogle Scholar
  204. 204.
    M. Briones, M.D. Petit-Dominguez, A.M. Parra-Alfambra, L. Vazquez, F. Pariente, E. Lorenzo, E. Casero, Electrocatalytic processes promoted by diamond nanoparticles in enzymatic biosensing devices. Bioelectrochemistry 111, 93–99 (2016).  https://doi.org/10.1016/j.bioelechem.2016.05.007CrossRefGoogle Scholar
  205. 205.
    N.B. Simioni, T.A. Silva, G.G. Oliveira, O. Fatibello, A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuator B-Chem. 250, 315–323 (2017).  https://doi.org/10.1016/j.snb.2017.04.175CrossRefGoogle Scholar
  206. 206.
    N.B. Simioni, G.G. Oliveira, F.C. Vicentini, M.R.V. Lanza, B.C. Janegitz, O. Fatibello-Filho, Nanodiamonds stabilized in dihexadecyl phosphate film for electrochemical study and quantification of codeine in biological and pharmaceutical samples. Diam. Relat. Mater. 74(Supplement C), 191–196 (2017).  https://doi.org/10.1016/j.diamond.2017.03.007
  207. 207.
    W. Zhang, K. Patel, A. Schexnider, S. Banu, A.D. Radadia, Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8(2), 1419–1428 (2014).  https://doi.org/10.1021/nn405240gCrossRefGoogle Scholar
  208. 208.
    N. Hasan, W. Zhang, A.D. Radadia, Characterization of nanodiamond seeded interdigitated electrodes using impedance spectroscopy of pure water. Electrochim. Acta 210, 375–382 (2016).  https://doi.org/10.1016/j.electacta.2016.05.053CrossRefGoogle Scholar
  209. 209.
    Y. Goto, F. Ohishi, K. Tanaka, H. Usui, Formation of diamond nanoparticle thin films by electrophoretic deposition. Jpn. J. Appl. Phys. 55(3), 6 (2016).  https://doi.org/10.7567/jjap.55.03dd10CrossRefGoogle Scholar
  210. 210.
    L. La-Torre-Riveros, K. Soto, M.A. Scibioh, C.R. Cabrera, Electrophoretically fabricated diamond nanoparticle-based electrodes. J. Electrochem. Soc. 157(6), B831–B836 (2010).  https://doi.org/10.1149/1.3374403CrossRefGoogle Scholar
  211. 211.
    S. Su, J. Wang, J. Wei, J. Qiu, S. Wang, Thermal conductivity studies of electrophoretically deposited nanodiamond arrays. Mater. Sci. Eng.: B 225(Supplement C), 54–59 (2017).  https://doi.org/10.1016/j.mseb.2017.08.010
  212. 212.
    G.L. Bilbro, Theory of electrodeposition of diamond nanoparticles. Diam. Relat. Mater. 11(8), 1572–1577 (2002).  https://doi.org/10.1016/S0925-9635(02)00104-8CrossRefGoogle Scholar
  213. 213.
    X. Zhao, J. Zang, Y. Wang, L. Bian, J. Yu, Electropolymerizing polyaniline on undoped 100 nm diamond powder and its electrochemical characteristics. Electrochem. Commun. 11(6), 1297–1300 (2009).  https://doi.org/10.1016/j.elecom.2009.04.029CrossRefGoogle Scholar
  214. 214.
    J. Zang, Y. Wang, X. Zhao, G. Xin, S. Sun, X. Qu, S. Ren, Electrochemical synthesis of polyaniline on nanodiamond powder. Int. J. Electrochem. Sci 7(2), 1677–1687 (2012)Google Scholar
  215. 215.
    H. Ashassi-Sorkhabi, M. Es’haghi, Electro-Synthesis of Nano-Colloidal PANI/ND composite for enhancement of Corrosion-Protection effect of PANI coatings. J. Mater. Eng. Perform. 22(12), 3755–3761 (2013).  https://doi.org/10.1007/s11665-013-0638-4
  216. 216.
    E. Tamburri, S. Orlanducci, V. Guglielmotti, G. Reina, M. Rossi, M.L. Terranova, Engineering detonation nanodiamond–Polyaniline composites by electrochemical routes: structural features and functional characterizations. Polymer 52(22), 5001–5008 (2011).  https://doi.org/10.1016/j.polymer.2011.09.003CrossRefGoogle Scholar
  217. 217.
    E. Tamburri, V. Guglielmotti, S. Orlanducci, M.L. Terranova, D. Sordi, D. Passeri, R. Matassa, M. Rossi, Nanodiamond-mediated crystallization in fibers of PANI nanocomposites produced by template-free polymerization: conductive and thermal properties of the fibrillar networks. Polymer 53(19), 4045–4053 (2012).  https://doi.org/10.1016/j.polymer.2012.07.014CrossRefGoogle Scholar
  218. 218.
    V. Kumar, R. Mahajan, D. Bhatnagar, I. Kaur, Nanofibers synthesis of ND:PANI composite by liquid/liquid interfacial polymerization and study on the effect of NDs on growth mechanism of nanofibers. Eur. Polym. J. 83(Supplement C), 1–9 (2016).  https://doi.org/10.1016/j.eurpolymj.2016.07.025
  219. 219.
    V. Kumar, R. Mahajan, I. Kaur, K.-H. Kim, Simple and Mediator-Free urea sensing based on engineered nanodiamonds with polyaniline nanofibers synthesized in situ. ACS Appl. Mater. Interfaces 9(20), 16813–16823 (2017).  https://doi.org/10.1021/acsami.7b01948CrossRefGoogle Scholar
  220. 220.
    M. Briones, E. Casero, L. Vazquez, F. Pariente, E. Lorenzo, M.D. Petit-Dominguez, Diamond nanoparticles as a way to improve electron transfer in sol-gel L-lactate biosensing platforms. Anal. Chim. Acta 908, 141–149 (2016).  https://doi.org/10.1016/j.aca.2015.12.029CrossRefGoogle Scholar
  221. 221.
    H. Ashassi-Sorkhabi, R. Bagheri, B. Rezaei-Moghadam, Corrosion protection properties of PPy-ND composite coating: sonoelectrochemical synthesis and design of experiment. J. Mater. Eng. Perform. 25(2), 611–622 (2016).  https://doi.org/10.1007/s11665-016-1886-xCrossRefGoogle Scholar
  222. 222.
    M.K. Ram, H. Gomez, F. Alvi, E. Stefanakos, Y. Goswami, A. Kumar, Novel nanohybrid structured regioregular polyhexylthiophene blend films for photoelectrochemical energy applications. J. Phys. Chem. C 115(44), 21987–21995 (2011).  https://doi.org/10.1021/jp205297nCrossRefGoogle Scholar
  223. 223.
    N. Giambrone, M. McCrory, A. Kumar, M.K. Ram, Comparative photoelectrochemical studies of regioregular polyhexylthiophene with microdiamond, nanodiamond and hexagonal boron nitride hybrid films. Thin Solid Films 615, 226–232 (2016).  https://doi.org/10.1016/j.tsf.2016.07.028CrossRefGoogle Scholar
  224. 224.
    L.-N. Tsai, G.-R. Shen, Y.-T. Cheng, W. Hsu, Performance improvement of an electrothermal microactuator fabricated using Ni-diamond nanocomposite. J. Microelectromech. Syst. 15(1), 149–158 (2006).  https://doi.org/10.1109/JMEMS.2005.863737CrossRefGoogle Scholar
  225. 225.
    E. Levashov, P. Vakaev, E. Zamulaeva, A. Kudryashov, V. Kurbatkina, D. Shtansky, A. Voevodin, A. Sanz, Disperse-strengthening by nanoparticles advanced tribological coatings and electrode materials for their deposition. Surf. Coat. Technol. 201(13), 6176–6181 (2007).  https://doi.org/10.1016/j.surfcoat.2006.08.134CrossRefGoogle Scholar
  226. 226.
    M. Sajjadnejad, H. Omidvar, M. Javanbakht, Influence of pulse operational parameters on electrodeposition, morphology and microstructure of Ni/nanodiamond composite coatings. Int. J. Electrochem. Sci. 12(5), 3635–3651 (2017).  https://doi.org/10.20964/2017.05.52CrossRefGoogle Scholar
  227. 227.
    M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari, Textural and structural evolution of pulse electrodeposited Ni/diamond nanocomposite coatings. J. Alloy. Compd. 704, 809–817 (2017).  https://doi.org/10.1016/j.jalicom.2016.12.318CrossRefGoogle Scholar
  228. 228.
    T. Fujimura, V.Y. Dolmatov, G. Burkat, E. Orlova, M. Veretennikova, Electrochemical codeposition of Sn–Pb–metal alloy along with detonation synthesis nanodiamonds. Diam. Relat. Mater. 13(11), 2226–2229 (2004).  https://doi.org/10.1016/j.diamond.2004.06.009CrossRefGoogle Scholar
  229. 229.
    S. Shahrokhian, S. Ranjbar, M. Ghalkhani, Modification of the electrode surface by ag nanoparticles decorated nano Diamond-graphite for voltammetric determination of ceftizoxime. Electroanalysis 28(3), 469–476 (2016).  https://doi.org/10.1002/elan.201500377CrossRefGoogle Scholar
  230. 230.
    Y. Yao, Y.J. Xue, Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuator B-Chem. 211, 52–58 (2015).  https://doi.org/10.1016/j.snb.2014.12.134CrossRefGoogle Scholar
  231. 231.
    L. Bian, Y. Wang, J. Lu, J. Zang, Synthesis and electrochemical properties of TiO2/nanodiamond nanocomposite. Diam. Relat. Mater. 19(10), 1178–1182 (2010).  https://doi.org/10.1016/j.diamond.2010.05.007CrossRefGoogle Scholar
  232. 232.
    L.Y. Bian, Y.H. Wang, J.B. Zang, J.K. Yu, H. Huang, Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts. J. Electroanal. Chem. 644(1), 85–88 (2010).  https://doi.org/10.1016/j.jelechem.2010.04.001CrossRefGoogle Scholar
  233. 233.
    L. La-Torre-Riveros, E. Abel-Tatis, A.E. Méndez-Torres, D.A. Tryk, M. Prelas, C.R. Cabrera, Synthesis of platinum and platinum–ruthenium-modified diamond nanoparticles. J. Nanopart. Res. 13(7), 2997–3009 (2011).  https://doi.org/10.1007/s11051-010-0196-8CrossRefGoogle Scholar
  234. 234.
    L.Y. Bian, Y.H. Wang, J.B. Zang, F.W. Meng, Y.L. Zhao, Microwave synthesis and characterization of Pt nanoparticles supported on undoped nanodiamond for methanol electrooxidation. Int. J. Hydrog. Energy 37(2), 1220–1225 (2012).  https://doi.org/10.1016/j.ijhydene.2011.09.118CrossRefGoogle Scholar
  235. 235.
    L. La-Torre-Riveros, R. Guzman-Blas, A.N.E. Méndez-Torres, M. Prelas, D.A. Tryk, C.R. Cabrera, Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 4(2), 1134–11347 (2012)  https://doi.org/10.1021/am2018628
  236. 236.
    J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, R. Lu, X. Qu, S. Ren, Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electro-oxidation. Carbon 50(8), 3032–3038 (2012).  https://doi.org/10.1016/j.carbon.2012.02.089CrossRefGoogle Scholar
  237. 237.
    Y.L. Zhao, Y.H. Wang, J.B. Zang, J. Lu, X.P. Xu, A novel support of nano titania modified graphitized nanodiamond for Pt electrocatalyst in direct methanol fuel cell. Int. J. Hydrog. Energy 40(13), 4540–4547 (2015).  https://doi.org/10.1016/j.ijhydene.2015.02.041CrossRefGoogle Scholar
  238. 238.
    Y. Zhang, Y.H. Wang, L.Y. Bian, R. Lu, J.B. Zang, Functional separation of oxidation-reduction reaction and electron transport: PtRu/undoped nanodiamond and acetylene black as a hybrid electrocatalyst in a direct methanol fuel cell. Int. J. Hydrog. Energy 41(8), 4624–4631 (2016).  https://doi.org/10.1016/j.ijhydene.2016.01.082CrossRefGoogle Scholar
  239. 239.
    L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015).  https://doi.org/10.1021/cr5003563CrossRefGoogle Scholar
  240. 240.
    Y.S. Zhu, Y.M. Lin, B.S. Zhang, J.F. Rong, B.N. Zong, D.S. Su, Nitrogen-doped annealed nanodiamonds with varied sp(2)/sp(3) ratio as metal-free electrocatalyst for the oxygen reduction reaction. Chemcatchem 7(18), 2840–2845 (2015).  https://doi.org/10.1002/cctc.201402930CrossRefGoogle Scholar
  241. 241.
    E.Y. Choi, C.K. Kim, Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci Rep. 7(1), 4178 (2017).  https://doi.org/10.1038/s41598-017-04597-6CrossRefGoogle Scholar
  242. 242.
    L. Zhou, H. Zhang, X. Guo, H. Sun, S. Liu, M.O. Tade, S. Wang, Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications. J. Colloid Interface Sci. 493(Supplement C), 275–80 (2017).  https://doi.org/10.1016/j.jcis.2017.01.038
  243. 243.
    D.H. Wang, L.-S. Tan, H. Huang, L. Dai, E. Ōsawa, In-situ nanocomposite synthesis: Arylcarbonylation and grafting of primary diamond nanoparticles with a poly(ether − ketone) in polyphosphoric acid. Macromolecules 42(1), 114–124 (2009).  https://doi.org/10.1021/ma8019078
  244. 244.
    K. Pei, H.D. Li, G.T. Zou, R.C. Yu, H.F. Zhao, X. Shen, L.Y. Wang, Y.P. Song, D.C. Qiu, Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell. J. Power Sources 342, 515–520 (2017).  https://doi.org/10.1016/j.jpowsour.2016.12.051CrossRefGoogle Scholar
  245. 245.
    X.-B. Cheng, M.-Q. Zhao, C. Chen, A. Pentecost, K. Maleski, T. Mathis, X.-Q. Zhang, Q. Zhang, J. Jiang, Y. Gogotsi, Nanodiamonds suppress the growth of lithium dendrites. Nat. Commun. 8(1), 336 (2017).  https://doi.org/10.1038/s41467-017-00519-2CrossRefGoogle Scholar
  246. 246.
    V. Medeliene, V. Stankevič, G. Bikulčius, The influence of artificial diamond additions on the formation and properties of an electroplated copper metal matrix coating. Surf. Coat. Technol. 168(2), 161–168 (2003).  https://doi.org/10.1016/S0257-8972(03)00224-XCrossRefGoogle Scholar
  247. 247.
    N.K. Shrestha, T. Takebe, T. Saji, Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings. Diam. Relat. Mater. 15(10), 1570–1575 (2006).  https://doi.org/10.1016/j.diamond.2005.12.040CrossRefGoogle Scholar
  248. 248.
    L. Cunci, C.R. Cabrera, Preparation and electrochemistry of boron-doped diamond nanoparticles on glassy carbon electrodes. Electrochem. Solid-State Lett. 14(3), K17–K19 (2011).  https://doi.org/10.1149/1.3532943CrossRefGoogle Scholar
  249. 249.
    J. Scholz, A.J. McQuillan, K.B. Holt, Redox transformations at nanodiamond surfaces revealed by in situ infrared spectroscopy. Chem. Commun. 47(44), 12140–12142 (2011).  https://doi.org/10.1039/C1CC14961JCrossRefGoogle Scholar
  250. 250.
    Y.S. Zou, Y. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92(5), 053105 (2008).  https://doi.org/10.1063/1.2841822CrossRefGoogle Scholar
  251. 251.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8(11), 3572–3576 (2008).  https://doi.org/10.1021/nl801136hCrossRefGoogle Scholar
  252. 252.
    P. Subramanian, S. Kolagatla, S. Szunerits, Y. Coffinier, W.S. Yeap, K. Haenen, R. Boukherroub, A. Schechter, Atomic force microscopic and raman investigation of boron-doped diamond nanowire electrodes and their activity toward oxygen reduction. J Phys. Chem. C 121(6), 3397–3403 (2017).  https://doi.org/10.1021/acs.jpcc.6b11546CrossRefGoogle Scholar
  253. 253.
    M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 24, 3624–3626 (2009).  https://doi.org/10.1039/B903284CCrossRefGoogle Scholar
  254. 254.
    M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, Z.-Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22(2), 199–203 (2010).  https://doi.org/10.1002/elan.200900296CrossRefGoogle Scholar
  255. 255.
    F. Gao, G. Lewes-Malandrakis, M.T. Wolfer, W. Müller-Sebert, P. Gentile, D. Aradilla, T. Schubert, C.E. Nebel, Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam. Relat. Mater. 51(Supplement C), 1–6 (2015).  https://doi.org/10.1016/j.diamond.2014.10.009
  256. 256.
    K. Siuzdak, R. Bogdanowicz, M. Sawczak, M. Sobaszek, Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 7(2), 551–558 (2015).  https://doi.org/10.1039/C4NR04417GCrossRefGoogle Scholar
  257. 257.
    M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors. Thin Solid Films 601(Supplement C), 35–40 (2016).  https://doi.org/10.1016/j.tsf.2015.09.073
  258. 258.
    V. Petrak, Z.V. Zivcova, H. Krysova, O. Frank, A. Zukal, L. Klimsa, J. Kopecek, A. Taylor, L. Kavan, V. Mortet, Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 114, 457–464 (2017).  https://doi.org/10.1016/j.carbon.2016.12.012CrossRefGoogle Scholar
  259. 259.
    C. Hébert, E. Scorsone, M. Mermoux, P. Bergonzo, Porous diamond with high electrochemical performance. Carbon 90(Supplement C), 102–109. (2015)  https://doi.org/10.1016/j.carbon.2015.04.016
  260. 260.
    B.C. Lourencao, R.A. Pinheiro, T.A. Silva, E.J. Corat, O. Fatibello-Filho, Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications. Diam. Relat. Mater. 74(Supplement C), 182–190 (2017).  https://doi.org/10.1016/j.diamond.2017.03.006
  261. 261.
    A.A. Silva, R.A. Pinheiro, C.D.A. Razzino, V.J. Trava-Airoldi, E.J. Corat, Thin-film nanocomposites of BDD/CNT deposited on carbon fiber. Diam. Relat. Mater. 75(Supplement C), 116–122 (2017).  https://doi.org/10.1016/j.diamond.2017.02.017
  262. 262.
    M. Varga, S. Stehlik, O. Kaman, T. Izak, M. Domonkos, D.S. Lee, A. Kromka, Templated diamond growth on porous carbon foam decorated with polyvinyl alcohol-nanodiamond composite. Carbon 119(Supplement C), 124–132.  https://doi.org/10.1016/j.carbon.2017.04.022
  263. 263.
    T. Kondo, K. Yajima, T. Kato, M. Okano, C. Terashima, T. Aikawa, M. Hayase, M. Yuasa, Hierarchically nanostructured boron-doped diamond electrode surface. Diam. Relat. Mater. 72(Supplement C), 13–19 (2017)  https://doi.org/10.1016/j.diamond.2016.12.004
  264. 264.
    D. Plana, J. Humphrey, K. Bradley, V. Celorrio, D. Fermín, Charge transport across high surface area metal/diamond nanostructured composites. ACS Appl. Mater. Interfaces. 5(8), 2985–2990 (2013).  https://doi.org/10.1021/am302397pCrossRefGoogle Scholar
  265. 265.
    T. Kondo, K. Hirata, T. Kawai, M. Yuasa, Self-assembled fabrication of a polycrystalline boron-doped diamond surface supporting Pt (or Pd)/Au-shell/core nanoparticles on the (111) facets and Au nanoparticles on the (100) facets. Diam. Relat. Mater. 20(8), 1171–1178 (2011).  https://doi.org/10.1016/j.diamond.2011.06.033CrossRefGoogle Scholar
  266. 266.
    V. Plotnikov, B. Dem’yanov, S. Makarov, Effects of aluminum on the interaction of detonation diamond nanocrystals during high-temperature annealing. Tech. Phys. Lett. 35(5), 473–475 (2009).  https://doi.org/10.1134/s1063785009050265
  267. 267.
    D.P. Mitev, A.T. Townsend, B. Paull, P.N. Nesterenko, Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J. Mater. Sci. 49(10), 3573–3591 (2014).  https://doi.org/10.1007/s10853-014-8036-3CrossRefGoogle Scholar
  268. 268.
    V.Y. Dolmatov, A. Vehanen, V. Myllymäki, K.A. Rudometkin, A.N. Panova, K.M. Korolev, T.A. Shpadkovskaya, Purification of detonation nanodiamond material using high-intensity processes. Russ. J. Appl. Chem. 86(7), 1036–1045 (2013).  https://doi.org/10.1134/s1070427213070161CrossRefGoogle Scholar
  269. 269.
    V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand, D. Spitzer, An efficient purification method for detonation nanodiamonds. Diam. Relat. Mater. 17(1), 13–22 (2008).  https://doi.org/10.1016/j.diamond.2007.09.011CrossRefGoogle Scholar
  270. 270.
    O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P. Detkov, S. Turner, G. Van Tendeloo, Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 115(20), 9827–9837 (2011).  https://doi.org/10.1021/jp1102466CrossRefGoogle Scholar
  271. 271.
    S.P. Hong, T.H. Kim, S.W. Lee, Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern. Carbon 116(Supplement C), 640–647 (2017).  https://doi.org/10.1016/j.carbon.2017.02.040
  272. 272.
    N. Kannari, T. Itakura, J.-I. Ozaki, Electrochemical oxygen reduction activity of intermediate onion-like carbon produced by the thermal transformation of nanodiamond. Carbon 87(Supplement C), 415–417 (2015).  https://doi.org/10.1016/j.carbon.2015.02.050
  273. 273.
    J. Koh, S.H. Park, M.W. Chung, S.Y. Lee, S.I. Woo, Diamond@carbon-onion hybrid nanostructure as a highly promising electrocatalyst for the oxygen reduction reaction. RSC Adv. 6(33), 27528–27534 (2016).  https://doi.org/10.1039/c5ra28066dCrossRefGoogle Scholar
  274. 274.
    X.X. Liu, Y.H. Wang, L. Dong, X. Chen, G.X. Xin, Y. Zhang, J.B. Zang, One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Electrochim. Acta 194, 161–167 (2016).  https://doi.org/10.1016/j.electacta.2016.02.002CrossRefGoogle Scholar
  275. 275.
    K.E. Toghill, L. Xiao, N.R. Stradiotto, R.G. Compton, The determination of methanol using an electrolytically fabricated nickel microparticle modified boron doped diamond electrode. Electroanalysis 22(5), 491–500 (2010).  https://doi.org/10.1002/elan.200900523CrossRefGoogle Scholar
  276. 276.
    A. Panich, A. Altman, A. Shames, V.Y. Osipov, A. Aleksenskiy, A.Y. Vul, Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. J. Phys. D Appl. Phys. 44(12), 125303 (2011).  https://doi.org/10.1088/0022-3727/44/12/125303CrossRefGoogle Scholar
  277. 277.
    A.I. Shames, A.M. Panich, V.Y. Osipov, A.E. Aleksenskiy, A.Y. Vul’, T. Enoki, K. Takai, Structure and magnetic properties of detonation nanodiamond chemically modified by copper. J. Appl. Phys. 107(1), 014318 (2010).  https://doi.org/10.1063/1.3273486
  278. 278.
    A. Panich, A. Shames, O. Medvedev, V.Y. Osipov, A. Aleksenskiy, A.Y. Vul, Magnetic resonance study of detonation nanodiamonds with surface chemically modified by transition metal ions. Appl. Magn. Reson. 36(2–4), 317 (2009).  https://doi.org/10.1007/s00723-009-0028-0CrossRefGoogle Scholar
  279. 279.
    A.M. Panich, A.I. Shames, N.A. Sergeev, V.Y. Osipov, A.E. Alexenskiy, A.Y. Vul’, Magnetic resonance study of gadolinium-grafted nanodiamonds. J. Phys. Chem. C 120(35), 19804–19811 (2016).  https://doi.org/10.1021/acs.jpcc.6b05403
  280. 280.
    H.J. Looi, L.Y. Pang, M.D. Whitfield, J.S. Foord, R.B. Jackman, Engineering low resistance contacts on p-type hydrogenated diamond surfaces. Diam. Relat. Mater. 9(3), 975–981 (2000).  https://doi.org/10.1016/S0925-9635(00)00240-5CrossRefGoogle Scholar
  281. 281.
    Y. Jia, W. Zhu, E. Wang, Y. Huo, Z. Zhang, Initial stages of Ti growth on diamond (100) surfaces: from single adatom diffusion to quantum wire formation. Phys. Rev. Lett. 94(8), 086101 (2005).  https://doi.org/10.1103/PhysRevLett.94.086101CrossRefGoogle Scholar
  282. 282.
    S. Stehlik, T. Petit, H.A. Girard, J.-C. Arnault, A. Kromka, B. Rezek, Nanoparticles assume electrical potential according to substrate, size, and surface termination. Langmuir 29(5), 1634–1641 (2013).  https://doi.org/10.1021/la304472wCrossRefGoogle Scholar
  283. 283.
    I. Motochi, N. Makau, G. Amolo, Metal–semiconductor ohmic contacts: An ab initio Density Functional Theory study of the structural and electronic properties of metal–diamond (111) − (1 × 1) interfaces. Diam. Relat. Mater. 23, 10–17 (2012).  https://doi.org/10.1016/j.diamond.2011.12.021CrossRefGoogle Scholar
  284. 284.
    M. Geis, J. Twichell, T. Lyszczarz, Diamond emitters fabrication and theory. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 14(3), 2060–2067 (1996).  https://doi.org/10.1116/1.588986CrossRefGoogle Scholar
  285. 285.
    T. Tyler, V. Zhirnov, A. Kvit, D. Kang, J. Hren, Electron emission from diamond nanoparticles on metal tips. Appl. Phys. Lett. 82(17), 2904–2906 (2003).  https://doi.org/10.1063/1.1570498CrossRefGoogle Scholar
  286. 286.
    N. Xu, Y. Tzeng, R. Latham, Similarities in the ‘cold’ electron emission characteristics of diamond coated molybdenum electrodes and polished bulk graphite surfaces. J. Phys. D Appl. Phys. 26(10), 1776 (1993).  https://doi.org/10.1088/0022-3727/26/10/035CrossRefGoogle Scholar
  287. 287.
    V.V. Zhirnov, E.I. Givargizov, P.S. Plekhanov, Field emission from silicon spikes with diamond coatings. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 13(2), 418–421 (1995).  https://doi.org/10.1116/1.587960CrossRefGoogle Scholar
  288. 288.
    A. Karabutov, V. Frolov, V. Konov, Diamond/sp 2-bonded carbon structures: quantum well field electron emission? Diam. Relat. Mater. 10(3), 840–846 (2001).  https://doi.org/10.1016/S0925-9635(00)00569-0CrossRefGoogle Scholar
  289. 289.
    Y. Takasu, S. Konishi, W. Sugimoto, Y. Murakami, Catalytic formation of nanochannels in the surface layers of diamonds by metal nanoparticles. Electrochem. Solid-State Lett. 9(7), C114–C117 (2006).  https://doi.org/10.1149/1.2201995CrossRefGoogle Scholar
  290. 290.
    I.G. Casella, M. Contursi, Cobalt oxide electrodeposition on various electrode substrates from alkaline medium containing Co–gluconate complexes: a comparative voltammetric study. J. Solid State Electrochem. 16(12), 3739–3746 (2012).  https://doi.org/10.1007/s10008-012-1794-4CrossRefGoogle Scholar
  291. 291.
    S.A. Yao, R.E. Ruther, L. Zhang, R.A. Franking, R.J. Hamers, J.F. Berry, Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J. Am. Chem. Soc. 134(38), 15632–15635 (2012).  https://doi.org/10.1021/ja304783jCrossRefGoogle Scholar
  292. 292.
    I. Zegkinoglou, P.L. Cook, P.S. Johnson, W. Yang, J. Guo, D. Pickup, R.N. González-Moreno, C. Rogero, R.E. Ruther, M.L. Rigsby, Electronic structure of diamond surfaces functionalized by Ru(tpy)2. J. Phys. Chem. C 116(26), 13877–13883 (2012).  https://doi.org/10.1021/jp304016t
  293. 293.
    T. Ochiai, K. Nakata, T. Murakami, A. Fujishima, Y. Yao, D.A. Tryk, Y. Kubota, Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst. Water Res. 44(3), 904–910 (2010).  https://doi.org/10.1016/j.watres.2009.09.060CrossRefGoogle Scholar
  294. 294.
    P. Wang, M. Cao, Y. Ao, C. Wang, J. Hou, J. Qian, Investigation on Ce-doped TiO2-coated BDD composite electrode with high photoelectrocatalytic activity under visible light irradiation. Electrochem. Commun. 13(12), 1423–1426 (2011).  https://doi.org/10.1016/j.elecom.2011.09.009CrossRefGoogle Scholar
  295. 295.
    T. Zhao, J. Wang, L. Jiang, T. Cheng, Preparation method of titanium dioxide and boron-doped diamond compounded photoelectric-synergetic electrode. CN101875007 A, 2010Google Scholar
  296. 296.
    D. Zhu, L. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12(9), 836–841 (2013).  https://doi.org/10.1038/nmat3696CrossRefGoogle Scholar
  297. 297.
    R.J. Hamers, J.A. Bandy, D. Zhu, L. Zhang, Photoemission from diamond films and substrates into water: dynamics of solvated electrons and implications for diamond photoelectrochemistry. Faraday Discuss. 172, 397–411 (2014).  https://doi.org/10.1039/C4FD00039KCrossRefGoogle Scholar
  298. 298.
    J.T. Matsushima, A.B. Couto, N.G. Ferreira, M.R. Baldan, Study of the electrochemical deposition of Cu/Sn alloy nanoparticles on boron doped diamond films for electrocatalytic nitrate reduction. MRS Proc. 1511 (2013).  https://doi.org/10.1557/opl.2013.16
  299. 299.
    M.-J. Song, S.-K. Lee, D.-S. Lim, Fabrication of Pt nanoparticles-decorated CVD diamond electrode for biosensor applications. Anal. Sci. 27(10), 985–985 (2011).  https://doi.org/10.2116/analsci.27.985
  300. 300.
    N. Yang, F. Gao, C.E. Nebel, Diamond decorated with copper nanoparticles for electrochemical reduction of carbon dioxide. Anal. Chem. 85(12), 5764–5769 (2013)Google Scholar
  301. 301.
    P. Kim, J.B. Joo, W. Kim, J. Kim, I.K. Song, J. Yi, NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J. Power Sources 160(2), 987–990 (2006).  https://doi.org/10.1016/j.jpowsour.2006.02.050CrossRefGoogle Scholar
  302. 302.
    A. Barras, S. Szunerits, L. Marcon, N. Monfilliette-Dupont, R. Boukherroub, Functionalization of diamond nanoparticles using “Click” chemistry. Langmuir 26(16), 13168–13172 (2010).  https://doi.org/10.1021/la101709qCrossRefGoogle Scholar
  303. 303.
    A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 22(5), 890–906 (2012).  https://doi.org/10.1002/adfm.201102670CrossRefGoogle Scholar
  304. 304.
    Sung, C.-M. Diamond neural devices and associated methods. US20110282421A1, 2011Google Scholar
  305. 305.
    A. Barriga-Rivera, L. Bareket, J. Goding, U.A. Aregueta-Robles, G.J. Suaning, Visual prosthesis: interfacing stimulating electrodes with retinal neurons to restore vision. Front. Neurosci. 11(620) (2017).  https://doi.org/10.3389/fnins.2017.00620
  306. 306.
    Y.-C. Chen, D.-C. Lee, T.-Y. Tsai, C.-Y. Hsiao, J.-W. Liu, C.-Y. Kao, H.-K. Lin, H.-C. Chen, T.J. Palathinkal, W.-F. Pong, N.-H. Tai, I.N. Lin, I.-M. Chiu, Induction and regulation of differentiation in neural stem cells on ultra-nanocrystalline diamond films. Biomaterials 31(21), 5575–5587 (2010).  https://doi.org/10.1016/j.biomaterials.2010.03.061CrossRefGoogle Scholar
  307. 307.
    A.E. Hadjinicolaou, R.T. Leung, D.J. Garrett, K. Ganesan, K. Fox, D.A.X. Nayagam, M.N. Shivdasani, H. Meffin, M.R. Ibbotson, S. Prawer, B.J. O’Brien, Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 33(24), 5812–5820 (2012).  https://doi.org/10.1016/j.biomaterials.2012.04.063CrossRefGoogle Scholar
  308. 308.
    A. Ahnood, H. Meffin, D.J. Garrettm, K. Fox, K. Ganesan, A. Stacey, N.V. Apollo, Y.T. Wong, S.G. Lichter, W. Kentler, O. Kavehei, U. Greferath, K.A. Vessey, M.R. Ibbotson, E.L. Fletcher, A.N. Burkitt, S. Prawer, Diamond devices for high acuity prosthetic vision. Adv. Biosyst. 1(1–2), 1600003-n/a (2017).  https://doi.org/10.1002/adbi.201600003
  309. 309.
    K. Ganesan, D.J. Garrett, A. Ahnood, M.N. Shivdasani, W. Tong, A.M. Turnley, K. Fox, H. Meffin, S. Prawer, An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials 35(3), 908–915 (2014).  https://doi.org/10.1016/j.biomaterials.2013.10.040CrossRefGoogle Scholar
  310. 310.
    A. Bendali, L. Rousseau, G. Lissorgues, E. Scorsone, M. Djilas, J. Dégardin, E. Dubus, S. Fouquet, R. Benosman, P. Bergonzo, J.-A. Sahelm, S. Picaud, Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility. Biomaterials 67(Supplement C), 73–83 (2015).  https://doi.org/10.1016/j.biomaterials.2015.07.018
  311. 311.
    A. Bendali, C. Agnès, S. Meffert, V. Forster, A. Bongrain, J.-C. Arnault, J.-A. Sahel, A. Offenhäusser, P. Bergonzo, S. Picaud, Distinctive glial and neuronal interfacing on nanocrystalline diamond. PLoS ONE 9(3), e92562 (2014).  https://doi.org/10.1371/journal.pone.0092562CrossRefGoogle Scholar
  312. 312.
    G. Piret, C. Hébert, J.-P. Mazellier, L. Rousseau, E. Scorsone, M. Cottance, G. Lissorgues, M.O. Heuschkel, S. Picaud, P. Bergonzo, B. Yvert, 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53(Supplement C), 173–83 (2015).  https://doi.org/10.1016/j.biomaterials.2015.02.021
  313. 313.
    C. Hébert, J.P. Mazellier, E. Scorsone, M. Mermoux, P. Bergonzo, Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon 71(Supplement C), 27–33 (2014).  https://doi.org/10.1016/j.carbon.2013.12.083
  314. 314.
    F. Vahidpour, L. Curley, I. Biró, M. McDonald, D. Croux, P. Pobedinskas, K. Haenen, M. Giugliano, Z.V. Živcová, L. Kavan, M. Nesládek, All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Physica Status Solidi (a) 214(2), 1532347-n/a (2017).  https://doi.org/10.1002/pssa.201532347
  315. 315.
    M. McDonald, A. Monaco, F. Vahidpour, K. Haenen, M. Giugliano, M. Nesladek, Diamond microelectrode arrays for in vitro neuronal recordings. MRS Commun. 7(3), 683–690 (2017).  https://doi.org/10.1557/mrc.2017.62CrossRefGoogle Scholar
  316. 316.
    V. Maybeck, R. Edgington, A. Bongrain, J.O. Welch, E. Scorsone, P. Bergonzo, R.B. Jackman, A. Offenhäusser, Boron-Doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc. Mater. 3(2), 283–289 (2014).  https://doi.org/10.1002/adhm.201300062CrossRefGoogle Scholar
  317. 317.
    D. Gaurab, T. Chao, S. Shabnam, U.A. Prabhu, Enabling long term monitoring of dopamine using dimensionally stable ultrananocrystalline diamond microelectrodes. Mater. Res. Express 3(9), 094001 (2016).  https://doi.org/10.1088/2053-1591/3/9/094001CrossRefGoogle Scholar
  318. 318.
    N. Yang, R. Hoffmann, W. Smirnov, C.E. Nebel, Interface properties of cytochrome c on a nano-textured diamond surface. Diam. Relat. Mater. 20(2), 269–273 (2011).  https://doi.org/10.1016/j.diamond.2010.12.012CrossRefGoogle Scholar
  319. 319.
    N. Yang, W. Smirnov, A. Kriele, R. Hoffmann, C.E. Nebel, Diamond nanotextured surfaces for enhanced protein redox activity. Physica Status Solidi (a) 207(9), 2069–72 (2010).  https://doi.org/10.1002/pssa.201000085
  320. 320.
    B.C. Janegitz, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Direct electrochemistry of tyrosinase and biosensing for phenol based on gold nanoparticles electrodeposited on a boron-doped diamond electrode. Diam. Relat. Mater. 25, 128–133 (2012).  https://doi.org/10.1016/j.diamond.2012.02.023CrossRefGoogle Scholar
  321. 321.
    A. Liu, Q. Ren, T. Xu, M. Yuan, W. Tang, Morphology-controllable gold nanostructures on phosphorus doped diamond-like carbon surfaces and their electrocatalysis for glucose oxidation. Sens. Actuators B: Chem. 162(1), 135–142 (2012).  https://doi.org/10.1016/j.snb.2011.12.050CrossRefGoogle Scholar
  322. 322.
    Y. Yu, Y. Zhou, L. Wu, J. Zhi, Electrochemical biosensor based on boron-doped diamond electrodes with modified surfaces. Int. J. Electrochem. 2012, 10 (2012).  https://doi.org/10.1155/2012/567171CrossRefGoogle Scholar
  323. 323.
    B. Liu, J. Hu, J.S. Foord, Electrochemical detection of DNA hybridization by a zirconia modified diamond electrode. Electrochem. Commun. 19, 46–49 (2012).  https://doi.org/10.1016/j.elecom.2012.03.007CrossRefGoogle Scholar
  324. 324.
    A. Zeng, C. Jin, S.-J. Cho, H.O. Seo, Y.D. Kim, D.C. Lim, D.H. Kim, B. Hong, J.-H. Boo, Nickel nano-particle modified nitrogen-doped amorphous hydrogenated diamond-like carbon film for glucose sensing. Mater. Res. Bull. 47(10), 2713–2716 (2012).  https://doi.org/10.1016/j.materresbull.2012.04.041CrossRefGoogle Scholar
  325. 325.
    W. Wu, R. Xie, L. Bai, Z. Tang, Z. Gu, Direct electrochemistry of shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique. J. Nanosci. Nanotechnol. 12(5), 3903–3908 (2012).  https://doi.org/10.1166/jnn.2012.6175CrossRefGoogle Scholar
  326. 326.
    C.-C. Wu, C.-C. Han, H.-C. Chang, Applications of surface-functionalized diamond nanoparticles for mass-spectrometry-based proteomics. J. Chin. Chem. Soc. 57(3B), 583–594 (2010).  https://doi.org/10.1002/jccs.201000082CrossRefGoogle Scholar
  327. 327.
    X. Fuku, F. Iftikar, E. Hess, E. Iwuoha, P. Baker, Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Anal. Chim. Acta 730, 49–59 (2012).  https://doi.org/10.1016/j.aca.2012.02.025CrossRefGoogle Scholar
  328. 328.
    R. Hoffmann, A. Kriele, S. Kopta, W. Smirnov, N. Yang, C.E. Nebel, Adsorption of cytochrome c on diamond. physica Status Solidi (a) 207(9), 2073–2077 (2010).  https://doi.org/10.1002/pssa.201000043
  329. 329.
    Y. Zou, D. Lou, K. Dou, L. He, Y. Dong, S. Wang, Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds. J. Solid State Electrochem. 20(1), 47–54 (2016).  https://doi.org/10.1007/s10008-015-3003-8CrossRefGoogle Scholar
  330. 330.
    A. Rahim Ruslinda, K. Tanabe, S. Ibori, X. Wang, H. Kawarada, Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein. Biosens. Bioelectron. 40(1), 277–282 (2013).  https://doi.org/10.1016/j.bios.2012.07.048CrossRefGoogle Scholar
  331. 331.
    M.-J. Song, S.-K. Lee, J.-Y. Lee, J.-H. Kim, D.-S. Lim, Electrochemical sensor based on Au nanoparticles decorated boron-doped diamond electrode using ferrocene-tagged aptamer for proton detection. J. Electroanal. Chem. 677–680, 139–144 (2012).  https://doi.org/10.1016/j.jelechem.2012.05.019CrossRefGoogle Scholar
  332. 332.
    D.T. Tran, V. Vermeeren, L. Grieten, S. Wenmackers, P. Wagner, J. Pollet, K.P.F. Janssen, L. Michiels, J. Lammertyn, Nanocrystalline diamond impedimetric aptasensor for the label-free detection of human IgE. Biosens. Bioelectron. 26(6), 2987–2993 (2011).  https://doi.org/10.1016/j.bios.2010.11.053CrossRefGoogle Scholar
  333. 333.
    O. Babchenko, E. Verveniotis, K. Hruska, M. Ledinsky, A. Kromka, B. Rezek, Direct growth of sub-micron diamond structures. Vacuum 86(6), 693–695 (2012).  https://doi.org/10.1016/j.vacuum.2011.08.011CrossRefGoogle Scholar
  334. 334.
    K. Honda, M. Yoshimura, T.N. Rao, D.A. Tryk, A. Fujishima, K. Yasui, Y. Sakamoto, K. Nishio, H. Masuda, Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes. J. Electroanal. Chem. 514(1–2), 35–50 (2001).  https://doi.org/10.1016/S0022-0728(01)00614-3CrossRefGoogle Scholar
  335. 335.
    A. Kriele, O.A. Williams, M. Wolfer, J.J. Hees, W. Smirnov, C.E. Nebel, Formation of nano-pores in nano-crystalline diamond films. Chem. Phys. Lett. 507(4–6), 253–259 (2011).  https://doi.org/10.1016/j.cplett.2011.03.089CrossRefGoogle Scholar
  336. 336.
    F. Weigl, S. Fricker, H.-G. Boyen, C. Dietrich, B. Koslowski, A. Plettl, O. Pursche, P. Ziemann, P. Walther, C. Hartmann, M. Ott, M. Möller, From self-organized masks to nanotips: a new concept for the preparation of densely packed arrays of diamond field emitters. Diam. Relat. Mater. 15(10), 1689–1694 (2006).  https://doi.org/10.1016/j.diamond.2006.02.007CrossRefGoogle Scholar
  337. 337.
    C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. Williams, Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam. Relat. Mater. 18(5–8), 910–917 (2009).  https://doi.org/10.1016/j.diamond.2008.11.024CrossRefGoogle Scholar
  338. 338.
    P. Subramanian, Y. Coffinier, D. Steinmüller-Nethl, J. Foord, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochim. Acta 110, 4–8 (2013).  https://doi.org/10.1016/j.electacta.2012.11.010CrossRefGoogle Scholar
  339. 339.
    N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013).  https://doi.org/10.1016/j.elecom.2012.10.044CrossRefGoogle Scholar
  340. 340.
    H.A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille, J.-C. Arnault, P. Bergonzo, J.-P. Boilot, T. Gacoin, Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films. ACS Appl. Mater. Interfaces. 1(12), 2738–2746 (2009).  https://doi.org/10.1021/am900458gCrossRefGoogle Scholar
  341. 341.
    H. Zhuang, B. Song, T. Staedler, X. Jiang, Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication. Langmuir 27(19), 11981–11989 (2011).  https://doi.org/10.1021/la2024428CrossRefGoogle Scholar
  342. 342.
    O. Babchenko, A. Kromka, K. Hruska, M. Michalka, J. Potmesil, M. Vanecek, Nanostructuring of diamond films using self-assembled nanoparticles. Cent. Eur. J. Phys. 7(2), 310–314 (2009).  https://doi.org/10.2478/s11534-009-0026-8CrossRefGoogle Scholar
  343. 343.
    G. Powch, A. Jain, In Directed Self Assembly: a Novel, High Speed Method of Nanocoating Ultra-thin Films and Monolayers of Particles, 2012 NSTI Nanotechnology Conference and Expo, Santa Clara, CA (CRC Press: Santa Clara, CA, 2012), pp. 474–7Google Scholar
  344. 344.
    H. Sim, S.-I. Hong, S.-K. Lee, D.-S. Lim, J.-E. Jin, S.-W. Hwang, Fabrication of boron-doped nanocrystalline diamond nanoflowers based on 3D Cu(OH)2 dendritic architectures. J. Korean Phys. Soc. 60(5), 836–841 (2012).  https://doi.org/10.3938/jkps.60.836CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryOxford UniversityOxfordUK

Personalised recommendations