Advertisement

Diamond Electrochemical Devices

  • Nianjun YangEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

Conductive boron-doped diamond is one of the best electrode materials and has been widely used for different electrochemical applications. Among them, the fabrication, properties, and applications of small-dimensional diamond electrochemical devices (e.g., diamond microelectrode, ultramicroelectrode, nanoelectrode and their arrays as well as scanning probe microscopy tips) have been paid much attention. In this chapter we summarize recent progress and achievements with respect to these small dimensional diamond electrochemical devices. The potential applications and future research directions of these devices are also discussed and outlined.

Keywords

Diamond electrochemistry Electrochemical devices Small-dimensional electrodes Electrode arrays Scanning tunneling microscopy Scanning electrochemical microscopy 

Notes

Acknowledgements

The author thanks the financial support from German Research Foundation (DFG) under the project (grant no. YA344/1-1).

References

  1. 1.
    M. Iwaki, S. Sato, K. Takahashi, H. Sakairi, Electrical conductivity of nitrogen and argon implanted diamond. Nucl. Instrum. Methods Phys. Res. 209–210(2), 1129–1133 (1983).  https://doi.org/10.1016/0167-5087(83)90930-4CrossRefGoogle Scholar
  2. 2.
    Y.V. Pleskov, A.Y. Sakharova, M.D. Krotova, L.L. Bouilov, B.V. Spitsyn, Photoelectrochemical properties of semiconductor diamond. J. Electroanal. Chem. 228(1–2), 19–27 (1987).  https://doi.org/10.1016/0022-0728(87)80093-1CrossRefGoogle Scholar
  3. 3.
    R. Tenne, C. Levy-Clement, Diamond electrodes. Isr. J. Chem. 38(1–2), 57–73 (1998).  https://doi.org/10.1002/ijch.199800007CrossRefGoogle Scholar
  4. 4.
    G.M. Swain, A.B. Andreson, J.C. Angus, Applications of diamond thin films in electrochemistry. MRS Bull. 23(9), 56–60 (1998).  https://doi.org/10.1557/S0883769400029389CrossRefGoogle Scholar
  5. 5.
    Y.V. Pleskov, Synthetic diamond in electrochemistry. Russ. Chem. Rev. 68(5), 381–392 (1999).  https://doi.org/10.1070/RC1999v068n05ABEH000494CrossRefGoogle Scholar
  6. 6.
    S.J. Cobb, Z.J. Ayres, J.V. Macpherson, Boron doped diamond: a designer electrode material for the twenty-first century. Annu. Rev. Anal. Chem. 11 (2018).  https://doi.org/10.1146/annurev-anchem-061417-010107
  7. 7.
    T.A. Ivandini, Y. Einaga, Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chem. Commun. 53, 1338–1347 (2017).  https://doi.org/10.1039/C6CC08681KCrossRefGoogle Scholar
  8. 8.
    N. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a review. Carbon 99, 90–110 (2016).  https://doi.org/10.1016/j.carbon.2015.11.061CrossRefGoogle Scholar
  9. 9.
    R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008).  https://doi.org/10.1021/cr068076m
  10. 10.
    O. Chailapakul, W. Siangproh, D.A. Tryk, Boron-doped diamond-based sensors: a review. Sens. Lett. 4(2), 99–119 (2006).  https://doi.org/10.1166/sl.2006.008CrossRefGoogle Scholar
  11. 11.
    Y.L. Zhou, J.F. Zhi, The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5), 1189–1196 (2009).  https://doi.org/10.1016/j.talanta.2009.05.026CrossRefGoogle Scholar
  12. 12.
    C.E. Nebel, B. Rezek, D. Shin, H. Uetsuka, N. Yang, Diamond for bio-sensor applications. J. Phys. D Appl. Phys. 40(20), 6443–6466 (2007).  https://doi.org/10.1088/0022-3727/40/20/S21CrossRefGoogle Scholar
  13. 13.
    R. Linares, P. Doering, B. Linares, Diamond bio electronics. Stud. Health Technol. Inform. 149, 284–296 (2009).  https://doi.org/10.3233/978-1-60750-050-6-284CrossRefGoogle Scholar
  14. 14.
    V. Vermeeren, S. Wenmackers, P. Wagner, L. Michiels, DNA sensors with diamond as a promising alternative transducer material. Sensor 9(7), 5600–5636 (2009).  https://doi.org/10.3390/s90705600CrossRefGoogle Scholar
  15. 15.
    A. Argoitia, H.B. Martin, E.J. Rozak, U. Landau, J.C. Angus, Electrochemical studies of boron-doped diamond electrodes. MRS. Proc. 416, 349 (1995).  https://doi.org/10.1557/PROC-416-349CrossRefGoogle Scholar
  16. 16.
    G.M. Swain, R. Ramesham, The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal. Chem. 65(4), 345–351 (1993).  https://doi.org/10.1021/ac00052a007CrossRefGoogle Scholar
  17. 17.
    G.M. Swain, The use of CVD diamond thin films in electrochemical systems. Adv. Mater. 6(5), 388–392 (1994).  https://doi.org/10.1002/adma.19940060511CrossRefGoogle Scholar
  18. 18.
    R. Hoffmann, A. Kriele, H. Obloh, J. Hees, M. Wolfer, W. Smirnov, N. Yang, C.E. Nebel, Electrochemical hydrogen termination of boron-doped diamond. Appl. Phys. Lett. 97(5), 052103 (2010).  https://doi.org/10.1063/1.3476346CrossRefGoogle Scholar
  19. 19.
    W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell Jr., J.M. Smith, R.J. Hamers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1(4), 253–257 (2002).  https://doi.org/10.1038/nmat779CrossRefGoogle Scholar
  20. 20.
    A. Hartl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmuller, M. Stutzmann, Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 3(10), 736–742 (2004).  https://doi.org/10.1038/nmat1204CrossRefGoogle Scholar
  21. 21.
    Y.S. Zou, Y. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92(5), 053105 (2008).  https://doi.org/10.1063/1.2841822CrossRefGoogle Scholar
  22. 22.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8(11), 3572–3576 (2008).  https://doi.org/10.1021/nl801136hCrossRefGoogle Scholar
  23. 23.
    C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. William, Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam. Relat. Mater. 18(5–8), 910–917 (2009).  https://doi.org/10.1016/j.diamond.2008.11.024CrossRefGoogle Scholar
  24. 24.
    W. Smirnov, A. Kriele, N. Yang, C.E. Nebel, Aligned diamond nano-wires: fabrication and characterisation for advanced applications in bio- and electrochemistry. Diam. Relat. Mater. 19(2–3), 186–189 (2010).  https://doi.org/10.1016/j.diamond.2009.09.001CrossRefGoogle Scholar
  25. 25.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd edn. (Wiley-VCH, New York, 2001)Google Scholar
  26. 26.
    J. Wang, Analytical Electrochemistry, 2nd edn. (Wiley-VCH, New York, 2000)CrossRefGoogle Scholar
  27. 27.
    X.J. Huang, A.M. O’Mahony, R.G. Compton, Microelectrode arrays for electrochemistry: approaches to fabrication. Small 5(7), 776–788 (2009).  https://doi.org/10.1002/smll.200801593CrossRefGoogle Scholar
  28. 28.
    D.W.M. Arrigan, Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12), 1157–1165 (2004).  https://doi.org/10.1039/B415395MCrossRefGoogle Scholar
  29. 29.
    R.G. Compton, G.G. Wildgoose, N.V. Rees, I. Streeter, R. Baron, Design, fabrication, characterisation and application of nanoelectrode arrays. Chem. Phys. Lett. 459(1–6), 1–17 (2008).  https://doi.org/10.1016/j.cplett.2008.03.095CrossRefGoogle Scholar
  30. 30.
    O. Ordeig, J. del Campo, F.X. Munoz, C.E. Banks, R.G. Compton, Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanalysis 19(19–20), 73–1986 (2007).  https://doi.org/10.1002/elan.200703914CrossRefGoogle Scholar
  31. 31.
    J.B. Cooper, S. Pang, S. Albin, J. Zheng, R.M. Johnson, Fabrication of boron-doped CVD diamond microelectrodes. Anal. Chem. 70(3), 464–467 (1998).  https://doi.org/10.1021/ac970762lCrossRefGoogle Scholar
  32. 32.
    B.V. Sarada, T.N. Rao, D.A. Tryk, A. Fujishima, Electrochemical characterization of highly boron-doped diamond microelectrodes in aqueous electrolyte. J. Electrochem. Soc. 146(4), 1469–1471 (1999).  https://doi.org/10.1149/1.1391788CrossRefGoogle Scholar
  33. 33.
    B. Duran, R.F. Brocenschi, M. France, J.J. Galligan, G.M. Swain, Electrochemical activation of diamond microelectrodes: implications for the in vitro measurement of serotonin in the bowel. Analyst 139(12), 3160–3166 (2014).  https://doi.org/10.1039/c4an00506fCrossRefGoogle Scholar
  34. 34.
    K.B. Holt, J. Hu, J.S. Foord, Fabrication of boron-doped diamond ultramicroelectrodes for use in scanning electrochemical microscopy experiments. Anal. Chem. 79(6), 2556–2561 (2007).  https://doi.org/10.1021/ac061995sCrossRefGoogle Scholar
  35. 35.
    J. Hu, J.S. Foord, K.B. Holt, Hot filament chemical vapour deposition of diamond ultramicroelectrodes. Phys. Chem. Chem. Phys. 9(40), 5469–5475 (2007).  https://doi.org/10.1039/B710241KCrossRefGoogle Scholar
  36. 36.
    J. Hu, K.B. Holt, J.S. Foord, Focused ion beam fabrication of boron-doped diamond ultramicroelectrodes. Anal. Chem. 81(14), 5663–5670 (2009).  https://doi.org/10.1021/ac9003908CrossRefGoogle Scholar
  37. 37.
    J. Cvacka, V. Quaiserova, J.W. Park, Y. Show, A. Muck, G.M. Swain, Boron-doped diamond microelectrodes for use in capillary electrophoresis with electrochemical detection. Anal. Chem. 75(11), 2678–2687 (2003).  https://doi.org/10.1021/ac030024zCrossRefGoogle Scholar
  38. 38.
    J. Park, Y. Show, V. Quaiserova, J.J. Galligan, G.D. Fink, G.M. Swain, Diamond microelectrodes for use in biological environments. J. Electroanal. Chem. 583(1), 56–68 (2005).  https://doi.org/10.1016/j.jelechem.2005.04.032CrossRefGoogle Scholar
  39. 39.
    J.M. Halpern, S. Xie, G.P. Sutton, B.T. Higashikubo, C.A. Chestek, H. Lu, H.J. Chiel, H.B. Martin, Diamond electrodes for neurodynamic studies in aplysia californica. Diam. Relat. Mater. 15(2–3), 183–187 (2006).  https://doi.org/10.1016/j.diamond.2005.06.039CrossRefGoogle Scholar
  40. 40.
    S. Xie, G. Shafer, C.G. Wilson, H.B. Martin, In vitro adenosine detection with a diamond-based sensor. Diam. Relat. Mater. 15(2–3), 225–228 (2006).  https://doi.org/10.1016/j.diamond.2005.08.018CrossRefGoogle Scholar
  41. 41.
    A.L. Colley, C.G. Williams, U. D´Haenens Johnsson, M.E. Newton, P.R. Uniwin, N.R. Wilson, J.V. Macpherson, Examination of the spatially heterogeneous electroactivity of boron-doped diamond microarray electrodes. Anal. Chem. 78(8), 2539–2548 (2006).  https://doi.org/10.1021/ac0520994
  42. 42.
    K. Tsunozaki, Y. Einaga, T.N. Rao, A. Fujishima, Fabrication and electrochemical characterization of boron-doped diamond microdisc array electrodes. Chem. Lett. 31(5), 502–503 (2002).  https://doi.org/10.1246/cl.2002.502CrossRefGoogle Scholar
  43. 43.
    C. Provent, W. Haenni, E. Santoli, P. Rychen, Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochim. Acta 49(22–23), 3737–3744 (2004).  https://doi.org/10.1016/j.electacta.2004.02.047CrossRefGoogle Scholar
  44. 44.
    K.L. Soh, W.P. Kang, J.L. Davidson, Y.M. Wong, A. Wisisoraat, G. Swain, D.E. Cliffel, CVD diamond anisotropic film as electrode for electrochemical sensing. Sens. Actuators B 91(1–3), 39–45 (2003).  https://doi.org/10.1016/S0925-4005(03)00064-9CrossRefGoogle Scholar
  45. 45.
    K.L. Soh, W.P. Kang, J.L. Davidson, S. Basu, Y.M. Wong, D.E. Cliffel, A.B. Bonds, G.M. Swain, Diamond-derived microelectrodes array for electrochemical analysis. Diam. Relat. Mater. 13(11–12), 2009–2015 (2004).  https://doi.org/10.1016/j.diamond.2004.07.025CrossRefGoogle Scholar
  46. 46.
    K.L. Soh, W.P. Kang, J.L. Davidson, Y.M. Wong, D.E. Cliffel, G. Swain, Ordered array of diamond ultramicroband electrodes for electrochemical analysis. Diam. Relat. Mater. 17(3), 240–246 (2008).  https://doi.org/10.1016/j.diamond.2007.12.023CrossRefGoogle Scholar
  47. 47.
    K.L. Soh, W.P. Kang, J.L. Davidson, Y.M. Wong, D.E. Cliffel, G. Swain, Diamond-derived ultramicroelectrodes designed for electrochemical analysis and bioanalyte sensing. Diam. Relat. Mater. 17(4–5), 900–905 (2008).  https://doi.org/10.1016/j.diamond.2007.12.041CrossRefGoogle Scholar
  48. 48.
    S. Raina, W.P. Kang, J.L. Davidson, Fabrication of nitrogen-incorporated nanodiamond ultra-microelectrode array for Dopamine detection. Diam. Relat. Mater. 19(2–3), 256–259 (2010).  https://doi.org/10.1016/j.diamond.2009.10.013CrossRefGoogle Scholar
  49. 49.
    M. Pagels, C.E. Hall, N.S. Lawrence, A. Meredith, T.G.L. Jones, H.P. Godfried, C.S.J. Pickles, J. Wilman, C.E. Banks, R.G. Compton, L. Jiang, All-diamond microelectrode array device. Anal. Chem. 77(11), 3705–3708 (2005).  https://doi.org/10.1021/ac0502100CrossRefGoogle Scholar
  50. 50.
    A.O. Simm, C.E. Banks, S. Ward-Jones, T.J. Davies, N.S. Lawrence, T.G.J. Jones, L. Jiang, R.G. Compton, Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu) via electrodeposition. Analyst 130(9), 1303–1311 (2005).  https://doi.org/10.1039/B506956DCrossRefGoogle Scholar
  51. 51.
    N.S. Lawrence, M. Pagels, A. Meredith, T.G.J. Jones, C.E. Hall, C.S. Pickles, H.P. Godfried, C.E. Banks, R.G. Compton, L. Jiang, Electroanalytical applications of boron-doped diamond microelectrode arrays. Talanta 69(4), 829–834 (2006).  https://doi.org/10.1016/j.talanta.2005.11.020CrossRefGoogle Scholar
  52. 52.
    M. Bonnauron, S. Saada, L. Rousseau, G. Lissorgues, C. Mer, P. Bergonzo, High aspect ratio diamond microelectrode array for neuronal activity measurements. Diam. Relat. Mater. 17(7–10), 1399–1404 (2008).  https://doi.org/10.1016/j.diamond.2007.12.065CrossRefGoogle Scholar
  53. 53.
    M. Bonnauron, S. Saada, C. Mer, C. Gesset, O.A. Williams, L. Rousseau, E. Scorsone, P. Mailley, Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Phys. Status Solidi (a) 205(9), 2126–2129 (2008).  https://doi.org/10.1002/pssa.200879733CrossRefGoogle Scholar
  54. 54.
    V. Carabelli, S. Gosso, A. Marcantoni, Y. Xu, E. Colombo, Z. Gao, E. Vittone, E. Kohn, A. Pasquarelli, E. Carbone, Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens. Bioelectron. 26(1), 92–98 (2010).  https://doi.org/10.1016/j.bios.2010.05.017CrossRefGoogle Scholar
  55. 55.
    W. Smirnov, N. Yang, R. Hoffmann, J. Hees, H. Obloh, W. Muller-Sebert, C.E. Nebel, Integrated all-diamond ultramicroelectrode arrays: optimization of Faradaic and capacitive currents. Anal. Chem. 83(19), 7438–7443 (2011).  https://doi.org/10.1021/ac201595kCrossRefGoogle Scholar
  56. 56.
    N. Yang, W. Smirnov, J. Hees, R. Hoffmann, A. Kriele, H. Obloh, W. Müller-Sebert, C.E. Nebel, Diamond ultra-microelectrode arrays for achieving maximum Faradaic current with minimum capacitive charging. Phys. Status Solidi (a) 208(9), 2087–2092 (2011).  https://doi.org/10.1002/pssa.201100016CrossRefGoogle Scholar
  57. 57.
    J. Hees, R. Hoffmann, A. Kriele, W. Smirnov, H. Obloh, K. Glorer, B. Raynor, R. Driad, N. Yang, O.A. Williams, C.E. Nebel, Nanocrystalline diamond nanoelectrode arrays and ensembles. ACS Nano 5(4), 3339–3346 (2011).  https://doi.org/10.1021/nn2005409CrossRefGoogle Scholar
  58. 58.
    A. Eifert, P. Langenwalter, J. Higl, M. Lind|n, C. E. Nebel, B. Mizaikoff, C. Kranz, Focused ion beam (FIB)-induced changes in the electrochemical behavior of boron-doped diamond (BDD) electrodes. Electrochim. Acta 130, 418–425 (2014).  https://doi.org/10.1016/j.electacta.2014.03.029
  59. 59.
    E.L. Silva, M.A. Neto, A.J.S. Fernandes, A.C. Bastos, R.F. Silva, M.L. Zheludkevich, F.J. Oliveira, Fast coating of ultramicroelectrodes with boron-doped nanocrystalline diamond. Diam. Relat. Mater. 19(10), 1330–1335 (2009).  https://doi.org/10.1016/j.diamond.2010.06.023CrossRefGoogle Scholar
  60. 60.
    M.B. Joseph, E. Bitziou, T.L. Read, L. Meng, N.L. Palmer, T.P. Mollart, M.E. Newton, J.V. Macpherson, Fabrication route for the production of coplanar, diamond insulated, boron doped diamond macro- and microelectrodes of any geometry. Anal. Chem. 86(11), 5238–5244 (2014).  https://doi.org/10.1021/ac501092yCrossRefGoogle Scholar
  61. 61.
    A. Suzuki, T.A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. Hattori, S. Kitazawa, Y. Einaga, Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79(22), 8608–8615 (2007).  https://doi.org/10.1021/ac071519hCrossRefGoogle Scholar
  62. 62.
    G. Dutta, S. Siddqui, H. Zeng, J.A. Carlisle, P.U. Arumugam, The effect of electrode size and surface heterogeneity on electrochemical properties of ultrananocrystalline diamond microelectrode. J. Electroanal. Chem. 756, 61–68 (2015).  https://doi.org/10.1016/j.jelechem.2015.08.016CrossRefGoogle Scholar
  63. 63.
    J. Park, J.J. Galligan, G.D. Fink, G.M. Swain, In vitro continuous amperometry with a diamond microelectrode coupled with video microscopy for simultaneously monitoring endogenous norepinephrine and its effect on the contractile response of a rat mesenteric artery. Anal. Chem. 78(19), 6756–6764 (2006).  https://doi.org/10.1021/ac060440uCrossRefGoogle Scholar
  64. 64.
    Y.S. Singh, L.E. Sawarynski, H.M. Michael, R.E. Ferrell, M.A. Murphey-Corb, G.M. Swain, B.A. Patel, A.M. Andrews, Boron-doped diamond microelectrodes reveal reduced serotonin uptake rates in lymphocytes from adult rhesus monkeys carrying the short allele of the 5-HTTLPR. ACS Chem. Neurosci. 1(1), 49–64 (2010).  https://doi.org/10.1021/cn900012yCrossRefGoogle Scholar
  65. 65.
    Y. Ishii, T.A. Ivandini, K. Murata, Y. Einaga, Development of electrolyte-free ozone sensors using boron-doped diamond electrodes. Anal. Chem. 85(9), 4284–4288 (2013).  https://doi.org/10.1021/ac400043bCrossRefGoogle Scholar
  66. 66.
    T. Ochiai, Y. Ishii, S. Tago, M. Hara, T. Sato, K. Hirota, K. Nakata, T. Murakami, Y. Einaga, A. Fujishima, Application of boron-doped diamond microelectrodes for dental treatment with pinpoint ozone-water production. ChemPhysChem 14(10), 2094–2096 (2013).  https://doi.org/10.1002/cphc.201200845CrossRefGoogle Scholar
  67. 67.
    K. Yoshimi, Y. Naya, N. Mitani, T. Kato, M. Inoue, S. Natori, T. Takahashi, A. Weitemier, N. Nishikawa, T. McHugh, Y. Einaga, S. Kitazawa, Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci. Res. 71(1), 49–62 (2011).  https://doi.org/10.1016/j.neures.2011.05.013CrossRefGoogle Scholar
  68. 68.
    E.L. Silva, A.C. Bastos, M.A. Neto, R.F. Silva, M.L. Zheludkevich, M.G.S. Ferreira, F.J. Oliveira, Boron doped nanocrystalline diamond microelectrodes for the detection of Zn2+ and dissolved O2. Electrochim. Acta 76, 487–494 (2012).  https://doi.org/10.1016/j.electacta.2012.05.074CrossRefGoogle Scholar
  69. 69.
    S.F. Peteu, B.W. Whitman, J.J. Galligan, G.M. Swain, Electrochemical detection of peroxynitrite using hemin–PEDOT functionalized boron-doped diamond microelectrode. Analyst 141, 1796–1806 (2016).  https://doi.org/10.1039/C5AN02587GCrossRefGoogle Scholar
  70. 70.
    K. Asai, T.A. Ivandini, Y. Einaga, Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Sci. Rep. 6, 32429 (2016).  https://doi.org/10.1038/srep32429CrossRefGoogle Scholar
  71. 71.
    D. Khamis, E. Mahe, F. Dardoize, D. Devilliers, Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy. J. Appl. Electrochem. 40(10), 1829–1838 (2010).  https://doi.org/10.1007/s10800-010-0114-xCrossRefGoogle Scholar
  72. 72.
    E. Popa, H. Notsu, T. Miwa, D.A. Tryk, A. Fujishima, Selective electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes. Electrochem. Solid-State Lett. 2(1), 49–51 (1999).  https://doi.org/10.1149/1.1390730CrossRefGoogle Scholar
  73. 73.
    A. Fujishima, T.N. Rao, E. Popa, B.V. Sarada, I. Yagi, D.A. Tryk, Electroanalysis of dopamine and NADH at conductive diamond electrodes. J. Electroanal. Chem. 473(1–2), 179–185 (1999).  https://doi.org/10.1016/S0022-0728(99)00106-0CrossRefGoogle Scholar
  74. 74.
    D. Sopchak, B. Miller, R. Kalish, Y. Avyigal, X. Shi, Dopamine and ascorbate analysis at hydrodynamic electrodes of boron doped diamond and nitrogen incorporated tetrahedral amorphous carbon. Electroanalysis 14(7–8), 473–478 (2002).  https://doi.org/10.1002/1521-4109(200204)CrossRefGoogle Scholar
  75. 75.
    W.C. Poh, K.P. Loh, W.D. Zhang, S. Triparthy, J.-S. Ye, F.-S. Sheu, Biosensing properties of diamond and carbon nanotubes. Langmuir 20(13), 5484–5492 (2004).  https://doi.org/10.1021/la0490947CrossRefGoogle Scholar
  76. 76.
    P.S. Siew, K.P. Loh, W.C. Poh, H. Zhang, Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. Diam. Relat. Mater. 14(3–7), 426–431 (2005).  https://doi.org/10.1016/j.diamond.2004.11.016CrossRefGoogle Scholar
  77. 77.
    G.-H. Zhao, M.-F. Li, M.-L. Li, Differential pulse voltammetric determination of dopamine with the coexistence of ascorbic acid on boron-doped diamond surface. Cent. Eur. J. Chem. 5(4), 1114–1123 (2007).  https://doi.org/10.2478/s11532-007-0049-1CrossRefGoogle Scholar
  78. 78.
    A. Suzuki, T.A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. attori, S. Kitazawa, Y. Einaga, Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79(22), 8608–8615 (2007).  https://doi.org/10.1021/ac071519h
  79. 79.
    M. Wei, G. Terashima, M. Lv, A. Fijishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 45(24), 3624–3629 (2009).  https://doi.org/10.1039/b903284cCrossRefGoogle Scholar
  80. 80.
    G.W. Muna, V. Quaiserová-Mocko, G.M. Swain, Chlorinated phenol analysis using off-line solid-phase extraction and capillary electrophoresis coupled with amperometric detection and a boron-doped diamond microelectrode. Anal. Chem. 77(20), 6542–6548 (2005).  https://doi.org/10.1021/ac050473uCrossRefGoogle Scholar
  81. 81.
    L.A. Hutton, M. Vidotti, J.G. Iacobini, C. Kelly, M.E. Newton, P.R. Unwin, J.V. Macpherson, Fabrication and characterization of an all-diamond tubular flow microelectrode for electroanalysis. Anal. Chem. 83(14), 5804–5808 (2011).  https://doi.org/10.1021/ac2010247CrossRefGoogle Scholar
  82. 82.
    R. Oyobiki, T. Kato, M. Katayama, A. Sugitani, T. Watanabe, Y. Einaga, Y. Matsumoto, K. Horisawa, N. Doi, Toward high-throughput screening of NAD(P)-dependent oxidoreductases using boron-doped diamond microelectrodes and microfluidic devices. Anal. Chem. 86(19), 9570–9575 (2014).  https://doi.org/10.1021/ac501907xCrossRefGoogle Scholar
  83. 83.
    E.L. Silva, C.P. Gouvêa, M.C. Quevedo, M.A. Neto, B.S. Archanjo, A.J.S. Fernandes, C.A. Achete, R.F. Silva, M.L. Zheludkevich, F.J. Oliveira, All-diamond microelectrodes as solid state probes for localized electrochemical sensing. Anal. Chem. 87(13), 6487–6492 (2015).  https://doi.org/10.1021/acs.analchem.5b00756CrossRefGoogle Scholar
  84. 84.
    A. Avdic, A. Lugstein, M. Wu, B. Gollas, I. Pobelov, T. Wandlowski, K. Leonhardt, G. Denuault, E. Bertagnolli, Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM–SECM. Nanotechnology 22, 145306 (2011).  https://doi.org/10.1088/0957-4484/22/14/145306CrossRefGoogle Scholar
  85. 85.
    W. Smirnov, A. Kriele, R. Hoffmann, E. Sillero, J. Hees, O.A. Williams, N. Yang, C. Kranz, C.E. Nebel, Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes. Anal. Chem. 83(12), 4936–4941 (2011).  https://doi.org/10.1021/ac200659eCrossRefGoogle Scholar
  86. 86.
    A. Eifert, W. Smirnov, S. Frittmann, C. Nebel, B. Mizaikoff, C. Kranz, Atomic force microscopy probes with integrated boron doped diamond electrodes: fabrication and application. Electrochem. Commun. 25, 30–34 (2012).  https://doi.org/10.1016/j.elecom.2012.09.011CrossRefGoogle Scholar
  87. 87.
    A.E. Hess, D.M. Sabens, H.B. Martin, C.A. Zorman, Diamond-on-polymer microelectrode arrays fabricated using a chemical release transfer process. J. Microelectromechanical Syst. 20(4), 867–875 (2011).  https://doi.org/10.1109/JMEMS.2011.2159099CrossRefGoogle Scholar
  88. 88.
    Z. Gao, V. Carabelli, E. Carbone, E. Colombo, M. Dipalo, C. Manfredotti, A. Pasquarelli, A. Feneberg, K. Thonke, E. Vittone, Transparent microelectrode array in diamond technology. J. Micro-Nano Mechatronics 6(1–2), 33–37 (2011).  https://doi.org/10.1007/s12213-010-0032-3CrossRefGoogle Scholar
  89. 89.
    R. Kiran, L. Rousseau, G. Lissorgues, E. Scorsone, A. Bongrain, B. Yvert, S. Picaud, P. Mailley, P. Bergonzo, Multichannel boron doped nanocrystalline diamond ultramicroelectrode arrays: design, fabrication and characterization. Sensors 12(6), 7669–7681 (2012).  https://doi.org/10.3390/s120607669CrossRefGoogle Scholar
  90. 90.
    W. Smirnov, J.J. Hees, D. Brink, W. Muller-Sebert, A. Kriele, O.A. Williams, C.E. Nebel, Anisotropic etching of diamond by molten Ni particles. Appl. Phys. Lett. 97(7), 073117 (2010).  https://doi.org/10.1063/1.3480602CrossRefGoogle Scholar
  91. 91.
    C.A. Rusinek, M.F. Becker, R. Rechenberg, T. Schuelke, Fabrication and characterization of boron doped diamond microelectrode arrays of varied geometry. Electrochem. Commun. 73, 10–14 (2016).  https://doi.org/10.1016/j.elecom.2016.10.006CrossRefGoogle Scholar
  92. 92.
    V. Carabelli, A. Marcantoni, F. Picollo, A. Battiato, E. Bernardi, A. Pasquarelli, P. Olivero, E. Carbone, Planar diamond-based multiarrays to monitor neurotransmitter release and action potential firing: new perspectives in cellular neuroscience. ACS Chem. Neurosci. 8(2), 252–264 (2017).  https://doi.org/10.1021/acschemneuro.6b00328CrossRefGoogle Scholar
  93. 93.
    S. Siddiqui, Z. Dai, C.J. Stavis, H. Zeng, N. Moldovan, R.J. Hamers, J.A. Carlisle, P.U. Arumugam, A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array. Biosensor. Bioelectron. 15, 284–290 (2012).  https://doi.org/10.1016/j.bios.2012.03.001CrossRefGoogle Scholar
  94. 94.
    M.E. Sandison, J.M. Cooper, Nanofabrication of electrode arrays by electron-beam and nanoimprint lithographies. Lab Chip 6(8), 1020–1025 (2006).  https://doi.org/10.1039/B516598ACrossRefGoogle Scholar
  95. 95.
    Y.H. Lanyon, D.W.M. Arrigan, Recessed nanoband electrodes fabricated by focused ion beam milling. Sens. Actuators B 121(1), 341–347 (2007).  https://doi.org/10.1016/j.snb.2006.11.029CrossRefGoogle Scholar
  96. 96.
    Y.H. Lanyon, G. De Marzi, Y.E. Watson, A.J. Quinn, J.P. Gleeson, G. Redmond, D.W.M. Arrigan, Fabrication of nanopore array electrodes by focused ion beam milling. Anal. Chem. 79(8), 3048–3055 (2007).  https://doi.org/10.1021/ac061878xCrossRefGoogle Scholar
  97. 97.
    H. Li, N. Wu, A large-area nanoscale gold hemisphere pattern as a nanoelectrode array. Nanotechnology 19(27), 275301 (2008).  https://doi.org/10.1088/0957-4484/19/27/275301CrossRefGoogle Scholar
  98. 98.
    R.M. Penner, C.R. Martin, Preparation and electrochemical characterization of ultramicroelectrodes ensembles. Anal. Chem. 59(21), 2625–2630 (1987).  https://doi.org/10.1021/ac00148a020CrossRefGoogle Scholar
  99. 99.
    V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67(13), 1920–1925 (1995).  https://doi.org/10.1021/ac00109a003CrossRefGoogle Scholar
  100. 100.
    M. Yang, F. Qu, Y. Lu, Y. He, G. Shen, R. Yu, Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials 27(35), 5944–5950 (2006).  https://doi.org/10.1016/j.biomaterials.2006.08.014CrossRefGoogle Scholar
  101. 101.
    T. Lohmuller, U. Muller, S. Breisch, W. Nisch, R. Rudorf, W. Schuhmann, S. Neugebauer, M. Kaczor, S. Linke, S. Lechner, J. Spatz, M. Stelzle, Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties. J. Micromechanics Microengineering 18(11), 115011 (2008).  https://doi.org/10.1088/0960-1317/18/11/115011CrossRefGoogle Scholar
  102. 102.
    E. Jeoung, T.H. Galow, J. Schotter, M. Bal, A. Ursache, M.T. Tuominen, C.M. Stafford, T.P. Russell, V.M. Rotello, Fabrication and characterization of nanoelectrode arrays formed via block copolymer self-assembly. Langmuir 17(21), 6396–6398 (2001).  https://doi.org/10.1021/la010531gCrossRefGoogle Scholar
  103. 103.
    C. Wang, X. Shao, Q. Liu, Y. Mao, G. Yang, H. Xue, X. Hu, One step fabrication and characterization of platinum nanopore electrode ensembles formed via amphiphilic block copolymer self-assembly. Electrochim. Acta 52(2), 704–709 (2006).  https://doi.org/10.1016/j.electacta.2006.06.003CrossRefGoogle Scholar
  104. 104.
    C. Wang, Q. Liu, X. Shao, G. Yang, H. Xue, X. Hu, One step fabrication of nanoelectrodes ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content. Talanta 71(1), 178–185 (2007).  https://doi.org/10.1016/j.talanta.2006.03.055CrossRefGoogle Scholar
  105. 105.
    J. Li, J.E. Koehne, A.M. Cassell, H. Chen, H.T. Ng, Q. Ye, W. Fan, J. Han, M. Meyyappan, Inlaid Multi-Walled Carbon Nanotube Nanoelectrode Arrays for Electroanalysis, vol. 17 (Wiley-VCH, Weinheim, 2005), pp. 15–27.  https://doi.org/10.1002/elan.200403114
  106. 106.
    J. Koehne, J. Li, A.M. Cassell, H. Chen, Q. Ye, H.T. Ng, J. Han, M. Meyyappan, The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. J. Mater. Chem. 14(4), 676–684 (2004).  https://doi.org/10.1039/B311728FCrossRefGoogle Scholar
  107. 107.
    Y. Tu, Y. Lin, W. Yantasee, Z. Ren, Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation, and Application in Voltammetric Analysis, Electroanalysis, vol. 17 (Wiley-VCH, Weinheim, 2005), pp. 79–84.  https://doi.org/10.1002/elan.200403122
  108. 108.
    S. Siddiqui, P.U. Arumugam, H. Chen, J. Li, M. Meyyappan, Characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy: effect of scaling down electrode size. ACS Nano. 4(2), 955–961 (2010).  https://doi.org/10.1021/nn901583uCrossRefGoogle Scholar
  109. 109.
    N. Yang, W. Waldemar, C.E. Nebel, Fabrication, properties and electrochemical applications of diamond nanostructures. MRS Proc. 1511, mrsf12-1511-ee07-01 (2013).  https://doi.org/10.1557/opl.2012.1661
  110. 110.
    D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano. 3(8), 2121–2128 (2009).  https://doi.org/10.1021/nn9003154CrossRefGoogle Scholar
  111. 111.
    M. Lv, M. wei, F. Rong, C. Terashima, A. Fujishima, Z.-Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22(2), 199–203 (2010).  https://doi.org/10.1002/elan.200900296
  112. 112.
    W. Wu, L. Bai, X. Lin, Z. Tang, Z. Gu, Nanograss array boron-doped diamond electrode for enhanced electron transfer from Shewanella loihica PV-4. Electrochem. Commun. 13(8), 872–874 (2011).  https://doi.org/10.1016/j.elecom.2011.05.025CrossRefGoogle Scholar
  113. 113.
    D. Luo, J. Zhi, Fabrication and electrochemical behaviour of vertically aligned boron-doped diamond nanorod forest electrodes. Electrochem. Commun. 11(6), 1093–1096 (2009).  https://doi.org/10.1016/j.elecom.2009.03.011CrossRefGoogle Scholar
  114. 114.
    Y. Yang, J.-W. Oh, Y.-R. Kim, C. Terashima, A. Fujishima, J.S. Kim, H. Kim, Enhanced electrogenerated chemiluminescence of a ruthenium tris(2,2′)bipyridyl/tripropylamine system on a boron-doped diamond nanograss array. Chem. Commun. 46(31), 5793–5795 (2010).  https://doi.org/10.1039/c0cc00773kCrossRefGoogle Scholar
  115. 115.
    M.C. Granger, G.M. Swain, The influence of surface interactions on the reversibility of ferri/ferrocyanide at boron-doped diamond thin-film electrodes. J. Electrochem. Soc. 146(12), 4551–4558 (1999).  https://doi.org/10.1149/1.1392673CrossRefGoogle Scholar
  116. 116.
    W. Gajewski, P. Achatz, O.A. Williams, K. Haenen, E. Bustarret, M. Stutzmann, J.A. Garrido, Electronic and optical properties of boron-doped nanocrystalline diamond films. Phys. Rev. B 79(4), 045206 (2009).  https://doi.org/10.1103/PhysRevB.79.045206CrossRefGoogle Scholar
  117. 117.
    O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445(4–6), 255–258 (2007).  https://doi.org/10.1016/j.cplett.2007.07.091CrossRefGoogle Scholar
  118. 118.
    M. Sentic, F. Virgilio, A. Zanut, D. Manojlovic, S. Arbault, M. Tormen, N. Sojic, P. Ugo, Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Anal. Bioanal. Chem. 408(25), 7085–7094 (2016).  https://doi.org/10.1007/s00216-016-9504-1CrossRefGoogle Scholar
  119. 119.
    J. Guo, E. Lindner, Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal. Chem. 81(1), 130–138 (2009).  https://doi.org/10.1021/ac801592jCrossRefGoogle Scholar
  120. 120.
    M. Fleischmann, S. Pons, J. Daschbach, The ac impedance of spherical, cylindrical, disk, and ring microelectrodes. J. Electroanal. Chem. 317(1–2), 1–26 (1991).  https://doi.org/10.1016/0022-0728(91)85001-6CrossRefGoogle Scholar
  121. 121.
    M. Fleischmann, S. Pons, The behavior of microdisk and microring electrodes. Mass transport to the disk in the unsteady state: the ac response. J. Electroanal. Chem. 250(2), 277–283 (1988).  https://doi.org/10.1016/0022-0728(88)85169-6
  122. 122.
    L.M. Abrantes, M. Fleischmann, L.M. Peter, S. Pons, B.R. Scharifker, On the diffusional impedance of microdisc electrodes. J. Electroanal. Chem. 256(1), 229–233 (1988).  https://doi.org/10.1016/0022-0728(88)85023-XCrossRefGoogle Scholar
  123. 123.
    O. Koster, W. Schuhmann, H. Vogt, W. Mokwa, Quality control of ultra-microelectrode arrays using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electrochemical microscopy. Sens. Actuators B 76(1–3), 573–581 (2001).  https://doi.org/10.1016/S0925-4005(01)00637-2CrossRefGoogle Scholar
  124. 124.
    J. Hees, R. Hoffmann, N. Yang, C.E. Nebel, Diamond nanoelectrode arrays for the detection of surface sensitive adsorption. Chem. Eur. J. 19(34), 11287–11292 (2013).  https://doi.org/10.1002/chem.201301763CrossRefGoogle Scholar
  125. 125.
    C. Dincer, E. Laubender, J. Hees, C.E. Nebel, G. Urban, J. Heinze, SECM detection of single boron doped diamond nanodes and nanoelectrode arrays using phase-operated shear force technique. Electrochem. Commun. 24, 123–127 (2012).  https://doi.org/10.1016/j.elecom.2012.08.005CrossRefGoogle Scholar
  126. 126.
    C. Dincer, R. Ktaich, E. Laubender, J.J. Hees, J. Kieninger, C.E. Nebel, J. Heinze, G.A. Urban, Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection. Electrochim. Acta 185, 101–106 (2015). doi: https://doi.org/10.1016/j.electacta.2015.10.113
  127. 127.
    C. Kranz, Diamond as advanced material for scanning probe microscopy tips. Electroanalysis 28, 35–45 (2016).  https://doi.org/10.1002/elan.201500630CrossRefGoogle Scholar
  128. 128.
    R. Kaneko, S. Oguchi, Ion-implanted diamond tip for a scanning tunneling microscope. Jpn. J. Appl. Phys. 29, 1854–1855 (1990)CrossRefGoogle Scholar
  129. 129.
    E.P. Visser, J.W. Gerritsen, W.J.P. van Enckevort, H. van Kempen, Tip for scanning tunneling microscopy made of monocrystalline, semiconducting, chemical vapor deposited diamond. Appl. Phys. Lett. 60, 3232–3234 (1992).  https://doi.org/10.1063/1.106703CrossRefGoogle Scholar
  130. 130.
    Z. Chang, Z. Ma, J. Shen, X. Chu, C. Zhu, J. Wang, S. Pang, Z. Xue, Diamond tips and nanometer-scale mechanical polishing. Appl. Surf. Sci. 70–71, 407–412 (1993).  https://doi.org/10.1016/0169-4332(93)90466-OCrossRefGoogle Scholar
  131. 131.
    S. Albin, J. Zheng, J.B. Cooper, W. Fu, A.C. Lavarias, Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy. Appl. Phys. Lett. 71, 2848–2850 (1997).  https://doi.org/10.1063/1.120152CrossRefGoogle Scholar
  132. 132.
    O. Lysenko, N. Novikov, A. Gontar, V. Grushko, A. Shcherbakov, Combined scanning nanoindentation and tunneling microscope technique by means of semiconductive diamond berkovich tip. J. Phys.: Conf. Ser. 61, 740–744 (2007).  https://doi.org/10.1088/1742-6596/61/1/148
  133. 133.
    O. Lysenko, N. Novikov, V. Grushko, A. Shcherbakov, A. Katrusha, S. Ivakhnenko, V. Tkach, A. Gontar, Fabrication and characterization of single crystal semiconductive diamond tip for combined scanning tunneling microscopy. Dia. Relat. Mater. 17, 1316–1319 (2008).  https://doi.org/10.1016/j.diamond.2008.02.013CrossRefGoogle Scholar
  134. 134.
    A.P. Chepugov, A.N. Chaika, V.I. Grushko, E.I. Mitskevich, O.G. Lysenko, Boron-doped diamond single crystals for probes of the high-vacuum tunneling microscopy. J. Superhard Mater. 3, 151–157 (2013).  https://doi.org/10.3103/S1063457613030040CrossRefGoogle Scholar
  135. 135.
    V. Grushko, O. Libben, A.N. Chaika, N. Novikov, E. Mitskevich, A. Chepugov, O. Lysenko, B.E. Murphy, S.A. Krasnikov, I.V. Shvets, Atomically resolved STM imaging with a diamond tip: simulation and experiment. Nanotechnology 25, 025706 (2014).  https://doi.org/10.1088/0957-4484/25/2/025706CrossRefGoogle Scholar
  136. 136.
    A. Fujishima, Y. Einaga, T.N. Rao, D.A. Tryk, Diamond Electrochemistry (Elsevier Academic Press, Tokyo, 2005)Google Scholar
  137. 137.
    C.E. Nebel, J. Ristein, Thin Film Diamond II: Semiconductors and Semimetals, vol. 77 (Elsevier Academic Press, New York, 2004)Google Scholar
  138. 138.
    E. Brillas, C.A. Martinez-Huitle, Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications (Wiley, New Jersey, 2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Materials Engineering, University of SiegenSiegenGermany

Personalised recommendations