Advertisement

Diamond Films as Support for Electrochemical Systems for Energy Conversion and Storage

  • Patricia Rachel Fernandes da Costa
  • Elisama Vieira dos Santos
  • Djalma Ribeiro da Silva
  • Soliu Oladejo Ganiyu
  • Carlos A. Martínez-HuitleEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

Many efforts have been dedicated to develop and study different catalysts supported materials for energy storage and conversion. Polymer electrolyte membranes (PEM) and capacitors have been topics of special interest for the scientific community, then, the research to find excellent catalyst-supports has constantly increased. The use of conductive diamond films has been proposed due to their mechanical and chemical stability properties. In this context, the application of BDD-catalyst surfaces for PEM fuel cells as well as the production of electrochemical capacitors using BDD materials have been summarized and discussed in this chapter.

Keywords

Fuel cells Capacitors Diamond electrode Nanocatalyst Modified materials 

Notes

Acknowledgements

The authors acknowledge support from projects CNPq—465,571/2014-0; CNPq—446,846/2014-7 and CNPq—401,519/2014-7 and FAPESP—2014/50,945-4. Carlos A. Martínez-Huitle acknowledges the funding provided by the Alexander von Humboldt Foundation (Germany) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazil) as a fellowship for experienced researcher.

References

  1. 1.
    E. Antolini, Platinum-based ternary catalysts for low temperature fuel cells. Part II. Electrochemical properties. Appl. Cat. B Environ. 74, 337–350 (2007).  https://doi.org/10.1016/j.apcatb.2007.03.001
  2. 2.
    U. Griesbach, D. Zollinger, H. Pütter, Ch. Comninellis, Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale. J. Appl. Electrochem. 35, 1265–1270 (2005).  https://doi.org/10.1007/s10800-005-9038-2CrossRefGoogle Scholar
  3. 3.
    M. Panizza, E. Brillas, Ch. Comninellis, Application of boron-doped diamond electrodes For Wastewater Treatment. J. Environ. Eng. Manage. 18, 139–153 (2008)Google Scholar
  4. 4.
    P. Canizares, A. Gadri, J. Lobato, B. Nasr, R. Paz, M.A. Rodrigo, C. Saez, Electrochemical oxidation of azoic dyes with conductive-diamond anodes. Ind. Eng. Chem. Res. 45, 3468–3473 (2006).  https://doi.org/10.1021/ie051427nCrossRefGoogle Scholar
  5. 5.
    J. Iniesta, P.A. Michaud, M. Panizza, G. Cerisola, A. Aldaz, Ch. Comninellis, Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 46, 3573–3578 (2001)CrossRefGoogle Scholar
  6. 6.
    M.A. Rodrigo, P.A. Michaud, I. Duo, M. Panizza, G. Cerisola, Ch. Comninellis, Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J. Electrochem. Soc. 148, D60–D64 (2001).  https://doi.org/10.1149/1.1362545CrossRefGoogle Scholar
  7. 7.
    B. Boye, P.A. Michaud, B. Marselli, M.M. Dieng, E. Brillas, Ch. Comninellis, Anodic oxidation of 4-chlorophenoxyacetic acid on synthetic boron-doped diamond electrodes. New Diam. Front. C. Technol. 12, 63–72 (2002)Google Scholar
  8. 8.
    I. Sirés, N. Oturan, M.A. Oturan, R.M. Rodríguez, J.A. Garrido, E. Brillas, Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim. Acta 52, 5493–5503 (2007).  https://doi.org/10.1016/j.electacta.2007.03.011CrossRefGoogle Scholar
  9. 9.
    C. Flox, J.A. Garrido, R.M. Rodríguez, P.L. Cabot, F. Centellas, C. Arias, E. Brillas, Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal. Today 129, 29–36 (2007).  https://doi.org/10.1016/j.cattod.2007.06.049CrossRefGoogle Scholar
  10. 10.
    I. Sirés, F. Centellas, J.A. Garrido, R.M. Rodríguez, C. Arias, P.L. Cabot, E. Brillas, Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2 + and UVA light as catalysts. Appl. Catal. B-Environ. 72, 373–381 (2007).  https://doi.org/10.1016/j.apcatb.2006.12.002CrossRefGoogle Scholar
  11. 11.
    Y. Shao, J. Liu, Y. Wang, Y. Lin, Novel catalyst support materials for PEM fuel cells: current status and future prospects. J. Mater. Chem. 19, 46–59 (2009).  https://doi.org/10.1039/b808370cCrossRefGoogle Scholar
  12. 12.
    A. Kraft, Doped diamond: A compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355–385 (2007)Google Scholar
  13. 13.
    M. Boutonnet, S. Lögdberg, E.E. Svensson, Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr. Opin. Colloid Interface Sci. 13, 270–286 (2008).  https://doi.org/10.1016/j.cocis.2007.10.001CrossRefGoogle Scholar
  14. 14.
    S. Eriksson, U. Nylén, S. Rojas, M. Boutonnet, Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal. A Gen. 265, 207–219 (2004).  https://doi.org/10.1016/j.apcata.2004.01.014CrossRefGoogle Scholar
  15. 15.
    M. Boutonnet, J. Kizling, P. Stenius, G. Maire, The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf. 5, 209–225 (1982).  https://doi.org/10.1016/0166-6622(82)80079-6CrossRefGoogle Scholar
  16. 16.
    G. Siné, Ch. Comninellis, Nafion®-assisted deposition of microemulsion-synthesized platinum nanoparticles on BDD: Activation by electrogenerated OH radicals. Electrochim. Acta 50, 2249–2254 (2005).  https://doi.org/10.1016/j.electacta.2004.10.008CrossRefGoogle Scholar
  17. 17.
    G. Siné, G. Fóti, Ch. Comninellis, Boron-doped diamond (BDD)-supported Pt/Sn nanoparticles synthesized in microemulsion systems as electrocatalysts of ethanol oxidation. J. Electroanal. Chem. 595, 115–124 (2006).  https://doi.org/10.1016/j.jelechem.2006.07.012CrossRefGoogle Scholar
  18. 18.
    G. Siné, I. Duo, B. El Roustom, G. Fóti, Ch. Comninellis, Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis. J. Appl. Electrochem. 36, 847–862 (2006).  https://doi.org/10.1007/s10800-006-9159-2CrossRefGoogle Scholar
  19. 19.
    G. Siné, D. Smida, M. Limat, G. Fóti, Ch. Comninellis, Microemulsion synthesized Pt/Ru/Sn nanoparticles on BDD for alcohol electro-oxidation. J. Electrochem. Soc. 154, B170–B174 (2007).  https://doi.org/10.1149/1.2400602CrossRefGoogle Scholar
  20. 20.
    F. Cardarelli, P. Taxil, A. Savall, Ch. Comninellis, G. Manoli, O. Leclerc, Preparation of oxygen evolving electrodes with long service life under extreme conditions. J. Appl. Electrochem. 28, 245–250 (1998).  https://doi.org/10.1023/A:1003251329958CrossRefGoogle Scholar
  21. 21.
    I. Duo, P.A. Michaud, W. Haenni, A. Perret, Ch. Comninellis, Activation of boron-doped diamond with IrO2 clusters. Electrochem. Solid-State Lett. 3, 325–334 (2000).  https://doi.org/10.1149/1.1391137CrossRefGoogle Scholar
  22. 22.
    B.E. Roustom, G. Fóti, Ch. Comninellis, Preparation of gold nanoparticles by heat treatment of sputter deposited gold on boron-doped diamond film electrod. Electrochem. Commun. 7, 398–405 (2005).  https://doi.org/10.1016/j.elecom.2005.02.014CrossRefGoogle Scholar
  23. 23.
    F. Montilla, E. Morallón, I. Duo, Ch. Comninellis, J.L. Vázquez, Platinum particles deposited on synthetic boron-doped diamond surfaces. Application to methanol oxidation. Electrochim. Acta 48, 3891–3897 (2003).  https://doi.org/10.1016/s0013-4686(03)00526-7
  24. 24.
    A. De Battisti, S. Ferro, M. Dal Colle, Electrocatalysis at conductive diamond modified by noble-metal oxides. J. Phys. Chem. B 105, 1679–1689 (2001)CrossRefGoogle Scholar
  25. 25.
    J.S. Gao, T. Arunagiri, J.J. Chen, P. Goodwill, O. Chyan, J. Perez, D. Golden, Preparation and characterization of metal nanoparticles on a diamond surface. Chem. Mater. 12, 3495–3504 (2000).  https://doi.org/10.1021/cm000465oCrossRefGoogle Scholar
  26. 26.
    M. Li, G. Zhao, R. Geng, H. Hu, Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface. Bioelectrochemistry 74, 217–224 (2008).  https://doi.org/10.1016/j.bioelechem.2008.08.004CrossRefGoogle Scholar
  27. 27.
    V. Saez, J. Gonzalez-Garcia, M.A. Kulandainathan, F. Marken, Electro-deposition and stripping of catalytically active iron metal nanoparticles at boron-doped diamond electrodes. Electrochem. Commun. 9, 1127–1133 (2007).  https://doi.org/10.1016/j.elecom.2007.01.018CrossRefGoogle Scholar
  28. 28.
    K.E. Toghill, G.G. Wildgoose, A. Moshar, C. Mulcahy, R.G. Compton, Fabrication and characterization of a bismuth nanoparticle modified boron doped diamond electrode and its application to the simultaneous determination of cadmium(II) and lead(II). Electroanalysis 20, 1731–1739 (2008).  https://doi.org/10.1002/elan.200804277CrossRefGoogle Scholar
  29. 29.
    J. Wang, G.M. Swain, Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis: Preliminary studies of the oxygen-reduction. J. Electrochem. Soc. 150, E24–E32 (2003).  https://doi.org/10.1149/1.1524612CrossRefGoogle Scholar
  30. 30.
    O. Enea, B. Riedo, G. Dietler, AFM Study of Pt clusters electrochemically deposited onto boron-doped diamond films. Nano Lett. 2, 241–249 (2002).  https://doi.org/10.1021/nl015666lCrossRefGoogle Scholar
  31. 31.
    C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Chem. Rev. 115, 13362–13407 (2015)CrossRefGoogle Scholar
  32. 32.
    Z. He, J. Chen, D. Lui, H. Zhou, Y. Kuang, Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diam. Relat. Mater. 13, 1764–1770 (2004).  https://doi.org/10.1016/j.diamond.2004.03.004CrossRefGoogle Scholar
  33. 33.
    I. Gonzalez-Gonzalez, D.A. Tryk, C.R. Cabrera, Polycrystalline boron-doped diamond films as supports for methanol oxidation electrocatalysts. Diam. Relat. Mater. 15, 275–278 (2006).  https://doi.org/10.1016/j.diamond.2005.08.037CrossRefGoogle Scholar
  34. 34.
    H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, Methanol electrooxidation on well-characterized Pt–Ru alloys. J. Phys. Chem. 97, 12020–12029 (1993)CrossRefGoogle Scholar
  35. 35.
    X. Lu, J. Hu, J.S. Foord, Q. Wang, Electrochemical deposition of Pt–Ru on diamond electrodes for the electrooxidation of methanol. J. Electroanal. Chem. 654, 38–43 (2011).  https://doi.org/10.1016/j.jelechem.2011.01.034CrossRefGoogle Scholar
  36. 36.
    H.B. Suffredini, G.R. Salazar-Banda, S.T. Tanimoto, M.L. Calegaro, S.A.S. Machado, L.A. Avaca, AFM studies and electrochemical characterization of boron-doped diamond surfaces modified with metal oxides by the sol-gel method. J. Braz. Chem. Soc. 17, 257–264 (2006).  https://doi.org/10.1590/S0103-50532006000200007CrossRefGoogle Scholar
  37. 37.
    H.B. Suffredini, V. Tricoli, N. Vatistas, L.A. Avaca, Electro-oxidation of methanol and ethanol using a Pt–RuO2/C composite prepared by the sol-gel technique and supported on boron-doped diamond. J. Power Sources 158, 124–128 (2006).  https://doi.org/10.1016/j.jpowsour.2005.09.040CrossRefGoogle Scholar
  38. 38.
    L.C. Klein, M. Aparicio, F. Damay, Sol-gel processing for battery and fuel cell applications, in Applications of Sol-Gel Technology, vol. III, ed. by S. Sakka (Kluwer Academic Publisher, 2004), p. 311Google Scholar
  39. 39.
    S. Sakka (ed.), Applications of Sol-Gel Technology (Kluwer Academic Publisher, 2004), p. 3Google Scholar
  40. 40.
    H.B. Suffredini, V. Tricoli, L.A. Avaca, N. Vatistas, Sol-gel method to prepare active Pt–RuO 2 coatings on carbon powder for methanol oxidation. Electrochem. Commun. 6, 1025–1028 (2004).  https://doi.org/10.1016/j.elecom.2004.08.008CrossRefGoogle Scholar
  41. 41.
    G.R. Salazar-Banda, H.B. Suffredini, L.A. Avaca, Improved stability of PtOx Sol-gel-modified diamond electrodes covered with a Nafion® film. J. Braz. Chem. Soc. 16, 903–906 (2005).  https://doi.org/10.1590/S0103-50532005000600003CrossRefGoogle Scholar
  42. 42.
    G.R. Salazar-Banda, H.B. Suffredini, M.L. Calegaro, S.T. Tanimoto, L.A. Avaca, Sol-gel-modified boron-doped diamond surfaces for methanol and ethanol electro-oxidation in acid medium. J. Power Sources 162, 9–20 (2006).  https://doi.org/10.1016/j.jpowsour.2006.06.045CrossRefGoogle Scholar
  43. 43.
    G.R. Salazar-Banda, K.I.B. Eguiluz, L.A. Avaca, Boron-doped diamond powder as catalyst support for fuel cell applications. Electrochem. Commun. 9, 59–64 (2007).  https://doi.org/10.1016/j.elecom.2006.08.038CrossRefGoogle Scholar
  44. 44.
    H.B. Suffredini, V. Tricoli, N. Vatistas, L.A. Avaca, J. Power Sources 158, 124–128 (2006)CrossRefGoogle Scholar
  45. 45.
    H.B. Suffredini, G.R. Salazar-Banda, L.A. Avaca, Enhanced ethanol oxidation on PbOx-containing electrode materials for fuel cell applications. J. Power Sources 171, 355–362 (2007).  https://doi.org/10.1016/j.jpowsour.2007.06.048CrossRefGoogle Scholar
  46. 46.
    G.R. Salazar-Banda, H.B. Suffredini, L.A. Avaca, S.A.S. Machado, Mater. Chem. Phys. 117, 434–442 (2009)CrossRefGoogle Scholar
  47. 47.
    I. González-González, D.A. Tryk, C.R. Cabrera, Diam. Relat. Mater. 15, 275–278 (2006)CrossRefGoogle Scholar
  48. 48.
    V. M. Swope, I. Sasaki, A. Ay. G. M. Swain, Conductive diamond powder: A new catalyst support for the polymer electrolyte membrane fuel cell, ECS Trans. 3, 27–36 (2007).  https://doi.org/10.1149/1.2753281
  49. 49.
    L.A. Hutton, M. Vidotti, A.N. Patel, M.E. Newton, P.R. Unwin, J.V. Macpherson, Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J. Phys. Chem. C 115, 1649–1658 (2011).  https://doi.org/10.1021/jp109526bCrossRefGoogle Scholar
  50. 50.
    I. Gonzalez-Gonzalez, C. Lorenzo-Medrano, C.R. Cabrera, Adv. Phys. Chem. 10, 679246 (2011),  https://doi.org/10.1155/2011/679246
  51. 51.
    L. La-Torre-Riveros, E. Abel-Tatis, A.E. Mendez-Torres, D.A. Tryk, Mark Prelas, C.R. Cabrera, Synthesis of platinum and platinum-ruthenium-modified diamond nanoparticles, J. Nanopart. Res. 13, 2997–3009 (2011).  https://doi.org/10.1007/s11051-010-0196-8
  52. 52.
    L. Cunci, C.R. Cabrera, Preparation and electrochemistry of boron-doped diamond nanoparticles on glassy carbon electrodes. Electrochem. Solid-State Lett. 14, K17–K19 (2011).  https://doi.org/10.1149/1.3532943CrossRefGoogle Scholar
  53. 53.
    L. La-Torre-Riveros, R. Guzman-Blas, A.E. Méndez-Torres, M. Prelas, D.A. Tryk, C.R. Cabrera, Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces. 4, 1134–1147 (2012).  https://doi.org/10.1021/am2018628CrossRefGoogle Scholar
  54. 54.
    L. Chen, J. Hu, J.S. Foord, Electrodeposition of a Pt–PrO2-x electrocatalyst on diamond electrodes for the oxidation of methanol. Phys. Status Solidi A 209(9), 1792–1796 (2012).  https://doi.org/10.1002/pssa.201200049CrossRefGoogle Scholar
  55. 55.
    D. Santiago, G.G. Rodríguez-Calero, A. Palkar, D. Barraza-Jimenez, D.H. Galvan, G. Casillas, A. Mayoral, M. Jose-Yacamán, L. Echegoyen, C.R. Cabrera, Platinum electrodeposition on unsupported carbon nano-onions. Langmuir 28, 17202–17210 (2012).  https://doi.org/10.1021/la3031396CrossRefGoogle Scholar
  56. 56.
    T. Spǎtaru, P. Osiceanu, M. Marcu, C. Lete, C. Munteanu, N. Spǎtaru, Jpn. J. Appl. Phys. 51, 090119 (2012)Google Scholar
  57. 57.
    X. Lyu, J. Hua, J.S. Foord, Q. Wang, A novel electroless method to prepare a platinum electrocatalyst on diamond for fuel cell applications. J. Power Sources 242, 631–637 (2013).  https://doi.org/10.1016/j.jpowsour.2013.05.057CrossRefGoogle Scholar
  58. 58.
    A. Lewandowski, M. Galinski, Practical and theoretical limits for electrochemical double-layer capacitors. J. Power Sources 173, 822–828 (2007).  https://doi.org/10.1016/j.jpowsour.2007.05.062CrossRefGoogle Scholar
  59. 59.
    H.D. Abruña, Y. Kiya, J.C. Henderson, Batteries and electrochemical capacitors. Phys. Today 61, 43–47 (2008).  https://doi.org/10.1063/1.3047681CrossRefGoogle Scholar
  60. 60.
    Y. Zhang, Y. Gui, X. Wu, H. Feng, A. Zhang, L. Wang, T.C. Xia, Preparation of nanostructures NiO and their electrochemical capacitive behaviors. Int. J. Hydrog Energy 34, 2467–2470 (2009).  https://doi.org/10.1016/j.ijhydene.2008.12.078CrossRefGoogle Scholar
  61. 61.
    J.R. Miller, Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim. Acta 52, 1703–1708 (2006).  https://doi.org/10.1016/j.electacta.2006.02.056CrossRefGoogle Scholar
  62. 62.
    C. -Z. Yuan, B. Gao, X. -G. Zhang, Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J. Power Sources 173, 606–612 (2007).  https://doi.org/10.1016/j.jpowsour.2007.04.034
  63. 63.
    K. Honda, T.N. Rao, D.A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. J. Electrochem. Soc. 147, 644–659 (2000).  https://doi.org/10.1149/1.1393249CrossRefGoogle Scholar
  64. 64.
    M. Yoshimura, K. Honda, R. Uchikado, T. Kondo, T.N. Rao, D.A. Tryk, A. Fujishima, Y. Sakamoto, K. Yasui, H. Masuda, Electrochemical characterization of nanoporous honeycomb diamond electrodes in non-aqueous electrolytes. Diam. Relat. Mater. 10, 620–626 (2001).  https://doi.org/10.1016/S0925-9635(00)00381-2CrossRefGoogle Scholar
  65. 65.
    K. Honda, T.N. Rao, D.A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Impedance Characteristics of the Nanoporous Honeycomb Diamond Electrodes for Electrical Double-Layer Capacitor Applications. J. Electrochem. Soc. 148, A668–A679 (2001).  https://doi.org/10.1149/1.1373450CrossRefGoogle Scholar
  66. 66.
    E.C. Almeida, A.F. Azevedo, M.R. Baldan, N.A. Braga, J.M. Rosolen, N.G. Ferreira, Nanocrystalline diamond/carbon felt as a novel composite for electrochemical storage energy in capacitor. Chem. Phys. Lett. 438, 47–52 (2007).  https://doi.org/10.1016/j.cplett.2007.02.040CrossRefGoogle Scholar
  67. 67.
    E.C. Almeida, M.R. Baldan, J.M. Rosolen, N.G. Ferreira, Impedance characteristics of the diamond/carbon fiber electrodes for electrical double-layer capacitor. Diam. Relat. Mater. 17, 1529–1533 (2008).  https://doi.org/10.1016/j.diamond.2008.03.006CrossRefGoogle Scholar
  68. 68.
    Y. Hernández-Lebrón, C.R. Cabrera, Square wave voltammetry restructuring of platinum nanoparticle at boron doped diamond electrode for enhanced ammonia oxidation. J. Electroanal. Chem. 793, 174–183 (2017).  https://doi.org/10.1016/j.jelechem.2016.12.036CrossRefGoogle Scholar
  69. 69.
    T. Spătaru, L. Preda, P. Osiceanu, C. Munteanu, M. Marcu, C. Lete, N. Spătaru, A. Fujishima, Electrochemical deposition of Pt–RuOx·nH2O composites on conductive diamond and its application to methanol oxidation in acidic media. Electrocatalysis 7, 140–148 (2016).  https://doi.org/10.1007/s12678-015-0292-8CrossRefGoogle Scholar
  70. 70.
    H.E.M. Hussein, H. Amari, J.V. Macpherson, Electrochemical synthesis of nanoporous platinum nanoparticles using laser pulse heating: Application to methanol oxidation. ACS Catal. 7, 7388–7398 (2017).  https://doi.org/10.1021/acscatal.7b02701CrossRefGoogle Scholar
  71. 71.
    C.K. Mavrokefalos, M. Hasan, J.F. Rohan, J.S. Foord, Enhanced mass activity and stability of bimetallic Pd–Ni nanoparticles on boron-doped diamond for direct ethanol fuel cell applications. Chem. Electro. Chem. 5, 455–463 (2018).  https://doi.org/10.1002/celc.201701105CrossRefGoogle Scholar
  72. 72.
    F. Gao, G. Lewes-Malandrakis, M.T. Wolfer, W. Mgller-Sebert, P. Gentile, D. Aradilla, T. Schubert, C.E. Nebel, Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam. Relat. Mater. 51, 1–6 (2015).  https://doi.org/10.1016/j.diamond.2014.10.009CrossRefGoogle Scholar
  73. 73.
    D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Mgller-Sebert, D. Gaboriau, P. Gentile, B. Iliev, T. Schubert, S. Sadki, G. Bidan, C.E. Nebel, A step forward into hierarchically nanostructured materials for high performance micro-supercapacitors: Diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochem. Commun. 63, 34–38 (2016).  https://doi.org/10.1016/j.elecom.2015.12.008CrossRefGoogle Scholar
  74. 74.
    P.W. May, M. Clegg, T.A. Silva, H. Zanin, O. Fatibello-Filho, V. Celorrio, D.J. Fermin, C.C. Welch, G. Hazell, L. Fisher, A. Nobbs, B. Su, Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces. J. Mater. Chem. B 4, 5737–5746 (2016).  https://doi.org/10.1039/c6tb01774fCrossRefGoogle Scholar
  75. 75.
    H. Zanin, P.W. May, D.J. Fermin, D. Plana, S.M.C. Vieira, W.I. Milne, E.J. Corat, Porous boron-doped diamond/carbon nanotube electrodes, ACS Appl. Mater. Interf. 6, 990–995 (2014),  https://doi.org/10.1021/am4044344
  76. 76.
    H. Zanin, P.W. May, R.L. Harniman, T. Risbridger, E.J. Corat, D.J. Fermin, High surface area diamond-like carbon electrodes grown on vertically aligned carbon nanotubes. Carbon 82, 288–296 (2015).  https://doi.org/10.1016/j.carbon.2014.10.073CrossRefGoogle Scholar
  77. 77.
    D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Mgller-Sebert, P. Gentile, M. Boniface, D. Aldakov, B. Iliev, T.J.S. Schubert, C.E. Nebel, G. Bidan, Designing 3D Multihierarchical Heteronanostructures for High-Performance On-Chip Hybrid Supercapacitors: Poly(3,4-(ethylenedioxy)thiophene)-Coated Diamond/Silicon Nanowire Electrodes in an Aprotic Ionic Liquid. ACS Appl. Mater. Interf. 8, 18069–18077 (2016).  https://doi.org/10.1021/acsami.6b04816CrossRefGoogle Scholar
  78. 78.
    F. Gao, C.E. Nebel, Diamond nanowire forest decorated with nickel hydroxide as a pseudocapacitive material for fast charging–discharging. Phys. Status Solidi A 212, 2533–2538 (2015)CrossRefGoogle Scholar
  79. 79.
    C. Shi, H. Li, C. Li, M. Li, C. Qu, B. Yang, Preparation of TiO2/boron-doped diamond/Ta multilayer films and use as electrode materials for supercapacitors. Appl. Surf. Sci. 357, 1380–1387 (2015).  https://doi.org/10.1016/j.apsusc.2015.10.006CrossRefGoogle Scholar
  80. 80.
    S. Yu, N. Yang, H. Zhuang, J. Meyer, S. Mandal, O.A. Williams, I. Lilge, H. Schönherr, X. Jiang, Electrochemical Supercapacitors from Diamond. J. Phys. Chem. C 119, 18918–18926 (2015).  https://doi.org/10.1021/acs.jpcc.5b04719CrossRefGoogle Scholar
  81. 81.
    K. Siuzdak, R. Bogdanowicz, M. Sawczak, M. Sobaszek, Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 7, 551–558 (2015).  https://doi.org/10.1039/c4nr04417gCrossRefGoogle Scholar
  82. 82.
    M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors. Thin Solid Films 601, 35–40 (2016).  https://doi.org/10.1016/j.tsf.2015.09.073CrossRefGoogle Scholar
  83. 83.
    K. Siuzdak, R. Bogdanowicz, Nano-engineered diamond-based materials for supercapacitor electrodes: a review. Energy Technol. 6, 223–237 (2018).  https://doi.org/10.1002/ente.201700345CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patricia Rachel Fernandes da Costa
    • 1
  • Elisama Vieira dos Santos
    • 1
  • Djalma Ribeiro da Silva
    • 1
  • Soliu Oladejo Ganiyu
    • 1
  • Carlos A. Martínez-Huitle
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of ChemistryFederal University of Rio Grande do NorteLagoa Nova, NatalBrazil
  2. 2.National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of ChemistryUnespAraraquaraBrazil
  3. 3.Institut für Organische Chemie, Johannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations