Advertisement

Trends of Organic Electrosynthesis by Using Boron-Doped Diamond Electrodes

  • Carlos A. Martínez-HuitleEmail author
  • Siegfried R. WaldvogelEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

The electro-organic synthesis is currently experiencing a renaissance due to the tremendous contributions of various electrocatalytic materials as well as the use of electric current as an inexpensive and suitable reagent to drive the electrosynthetic transformations, avoiding conventional chemical oxidizers or reducing agents. Consequently, electrosynthesis has a significant technical impact, because these processes can be easily scaled up, benefiting from advantages such as versatility, environmental compatibility (possibility of recovering and recycling non-converted substrates), automation (switching on or off electric current), inherent safety and potential cost effectiveness among others. Although many novel electrode materials have been developed and established in electro-organic synthesis, diamond films emerge as a novel and sustainable solution in selective electrochemical transformations for value-added organic products. This chapter aims to offer an overview on the recent synthetic developments which represent hot topics in BDD electro-organic synthesis.

Keywords

Cathode Anode Amination CO2 conversion Electrosynthesis Organic Electrocatalysis Diamond films 

Notes

Acknowledgements

Carlos A. Martínez-Huitle acknowledges the funding provided by the Alexander von Humboldt Foundation (Germany) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazil) as a fellowship for experienced researcher. The authors highly appreciate the financial support by the Center for INnovative and Emerging MAterials (CINEMA). Support by the Advanced Lab of Electrochemistry and Electrosynthesis—ELYSION (Carl Zeiss Stiftung) is gratefully acknowledged.

References

  1. 1.
    S.R. Waldvogel, S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, Modern electrochemical aspects for the synthesis of value added organic products. Angew. Chem. Int. Ed. (2018) (in press).  https://doi.org/10.1002/anie.201712732
  2. 2.
    S.R. Waldvogel, A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, Electrifying organic synthesis. Angew. Chem. Int. Ed. (2018) (in press).  https://doi.org/10.1002/anie.201711060
  3. 3.
    M. Yan, Y. Kawamata, P.S. Baran, Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117(21), 13230–13319 (2017).  https://doi.org/10.1021/acs.chemrev.7b00397CrossRefGoogle Scholar
  4. 4.
    A.J. Fry, in Synthetic Organic Electrochemistry, 2nd edn. (Wiley, New York, 1989)Google Scholar
  5. 5.
    (a) H.-J. Schäfer, in Encyclopedia of Electrochemistry, ed. by A.J. Bard, M. Stratmann, H.-J. Schäfer (Wiley-VCH, Weinheim, 2004), pp. 125–170; (b) H.-J. Schäfer, in Organic Electrochemistry, ed. by H. Lund, O. Hammerich (Marcel Dekker, New York, 2001), pp. 207–222Google Scholar
  6. 6.
    S.R. Waldvogel, A. Kirste, S. Mentizi, in Synthetic Diamond Films. Preparation, Electrochemistry, Characterization, and Applications, ed. by C.A. Martínez-Huitle, E. Brillas (Wiley, Hoboken, N.J, 2011), pp. 483–510.  https://doi.org/10.1002/9781118062364.ch19
  7. 7.
    S. Garcia-Segura, E. Vieira dos Santos, C.A. Martínez-Huitle, Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochem. Commun. 59, 52–55 (2015).  https://doi.org/10.1016/j.elecom.2015.07.002CrossRefGoogle Scholar
  8. 8.
    E. Brillas, C.A. Martínez-Huitle, Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications (Wiley, Hoboken, N.J, 2011).  https://doi.org/10.1002/9781118062364
  9. 9.
    C.A. Martínez-Huitle, M.A. Rodrigo, I. Sires, O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem. Rev. 115(24), 13362–13407 (2015).  https://doi.org/10.1021/acs.chemrev.5b00361CrossRefGoogle Scholar
  10. 10.
    C.A. Martínez-Huitle, E. Brillas, Electrochemical alternatives for drinking water disinfection. Angew. Chem. Int. Ed. 47(11), 1998–2005 (2008).  https://doi.org/10.1002/anie.200703621CrossRefGoogle Scholar
  11. 11.
    A. Kirste, M. Nieger, I.M. Malkowsky, F. Stecker, A. Fischer, S.R. Waldvogel, Ortho-selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols. Chem. Eur. J. 15(10), 2273–2277 (2009).  https://doi.org/10.1002/chem.200802556CrossRefGoogle Scholar
  12. 12.
    A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer, S.R. Waldvogel, Anodic phenol arene cross-coupling reaction on boron-doped diamond electrodes. Angew. Chem. Int. Ed. 49(5), 971–975 (2010).  https://doi.org/10.1002/anie.200904763CrossRefGoogle Scholar
  13. 13.
    P. Sabatier, in Nobel Lectures, Chemistry (Elsevier Publishing, Amsterdam, 1966), pp. 1901−1920Google Scholar
  14. 14.
    N. Yang, S.R. Waldvogel, X. Jiang, Electrochemistry of carbon dioxide on carbon electrodes. ACS Appl. Mater. Interfaces. 8(42), 28357–28371 (2016).  https://doi.org/10.1021/acsami.5b09825CrossRefGoogle Scholar
  15. 15.
    B.R. Eggins, E.M. Brown, E.A. O’Neill, J. Grimshaw, Carbon dioxide fixation by electrochemical reduction in water to oxaiate and glyoxylate. Tetrahedron Lett. 29(8), 945–948 (1988).  https://doi.org/10.1016/S0040-4039(00)82489-2CrossRefGoogle Scholar
  16. 16.
    K. Nakata, T. Ozaki, C. Terashima, A. Fujishima, Y. Einaga, High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem., Int. Ed. 53(3), 871–874 (2014).  https://doi.org/10.1002/anie.201308657
  17. 17.
    Y. Liu, S. Chen, X. Quan, H. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137(36), 11631–11636 (2015).  https://doi.org/10.1021/jacs.5b02975CrossRefGoogle Scholar
  18. 18.
    S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136(22), 7845–7848 (2014).  https://doi.org/10.1021/ja5031529CrossRefGoogle Scholar
  19. 19.
    J. Wu, R.M. Yadav, M. Liu, P.P. Sharma, C.S. Tiwary, L. Ma, X. Zou, X.-D. Zhou, B.I. Yakobson, J. Lou, P.M. Ajayan, Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9(5), 5364–5371 (2015).  https://doi.org/10.1021/acsnano.5b01079CrossRefGoogle Scholar
  20. 20.
    P.A. Christensen, A. Hamnett, A.V.G. Muir, N.A. Freeman, CO2 reduction at platinum, gold and glassy carbon electrodes in acetonitrile, an in-situ FTIR study. J. Electroanal. Chem. Interfacial Electrochem. 288(1–2), 197–215 (1990).  https://doi.org/10.1016/0022-0728(90)80035-5CrossRefGoogle Scholar
  21. 21.
    K. Hara, A. Kudo, T. Sakata, Electrochemical CO2 reduction on a glassy carbon electrode under high pressure. J. Electroanal. Chem. 421(1–2), 1–4 (1997).  https://doi.org/10.1016/S0022-0728(96)01028-5CrossRefGoogle Scholar
  22. 22.
    P.K. Jiwanti, K. Natsui, K. Nakatab, Y. Einaga, Selective production of methanol by the electrochemical reduction of CO2 on boron-doped diamond electrodes in aqueous ammonia solution. RSC Adv. 6(104), 102214–102217 (2016).  https://doi.org/10.1039/C6RA20466JCrossRefGoogle Scholar
  23. 23.
    N. Ikemiya, K. Natsui, K. Nakata, Y. Einaga, Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Adv. 7(36), 22510–22514 (2017).  https://doi.org/10.1039/C7RA03370BCrossRefGoogle Scholar
  24. 24.
    K. Natsui, H. Iwakawa, N. Ikemiya, K. Nakata, Y. Einaga, Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes. Angew. Chem. Int. Ed. 57(10), 2639–2643 (2018).  https://doi.org/10.1002/anie.201712271CrossRefGoogle Scholar
  25. 25.
    Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39(11–12), 1833–1839 (1994).  https://doi.org/10.1016/0013-4686(94)85172-7CrossRefGoogle Scholar
  26. 26.
    N. Yang, F. Gao, C.E. Nebel, Diamond decorated with copper nanoparticles for electrochemical reduction of carbon dioxide. Anal. Chem. 85(12), 5764–5769 (2013).  https://doi.org/10.1021/ac400377yCrossRefGoogle Scholar
  27. 27.
    H.S. Panglipur, T.A. Ivandini, R. Wibowo, Y. Einaga, Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD). AIP Conf. Proc. 1729, 020047 (2016).  https://doi.org/10.1063/1.4946950CrossRefGoogle Scholar
  28. 28.
    P.K. Jiwanti, K. Natsui, K. Nakata, Y. Einaga, The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochim. Acta 266, 414–419 (2018).  https://doi.org/10.1016/j.electacta.2018.02.041CrossRefGoogle Scholar
  29. 29.
    N. Spataru, K. Tokuhiro, C. Terashima, T.N. Rao, A. Fujishima, Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. J. Appl. Electrochem. 33(12), 1205–1210 (2003).  https://doi.org/10.1023/B:JACH.0000003866.85015.b6CrossRefGoogle Scholar
  30. 30.
    S.A. Yao, R.E. Ruther, L.H. Zhang, R.A. Franking, R.J. Hamers, J.F. Berry, Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J. Am. Chem. Soc. 134(38), 15632–15635 (2012).  https://doi.org/10.1021/ja304783jCrossRefGoogle Scholar
  31. 31.
    N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, C. Terashima, Boron-doped diamond semiconductor electrodes: efficient photoelectrochemical CO2 reduction through surface modification. Sci. Rep. 6(38010), 1–9 (2016).  https://doi.org/10.1038/srep38010CrossRefGoogle Scholar
  32. 32.
    (a) L. Bouveault, G. Blanc, Compt. Rend. 136, 1676–1678 (1903); (b) B.I. Seo, L.K. Wall, H. Lee, J.W. Buttrum, D.E. Lewis, An improved practical synthesis of isomerically pure 3-endo-(p-Methoxybenzyl)isoborneol. Synth. Commun. 23(1), 15–22 (2006).  https://doi.org/10.1080/00397919308020396
  33. 33.
    J. Tafel, E. Pfeffermann, Elektrolytische reduktion von oximen und phenylhydrazonen in schwefelsaurer löosung. Ber. Dtsch. Chem. Ges. 35, 1510–1518 (1902)CrossRefGoogle Scholar
  34. 34.
    H.B. Martin, A. Argoita, U. Landau, A.B. Anderson, J.C. Angus, Hydrogen and oxygen evolution on boron-doped diamond electrodes. J. Electrochem. Soc. 143(6), L133–L136 (1996).  https://doi.org/10.1149/1.1836901CrossRefGoogle Scholar
  35. 35.
    U. Griesbach, D. Zollinger, H. Pütter, C. Comninellis, Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale. J. Appl. Electrochem. 35(12), 1265–1270 (2005)CrossRefGoogle Scholar
  36. 36.
    (a) M.C. Schopohl, C. Siering, O. Kataeva, S.R. Waldvogel, Reversible enantiofacial dicrimination of a single heterocyclic substrate by supramolecular receptors—a new concept for chiral induction. Angew. Chem. Int. Ed. 42(23), 2620–2623 (2003).  https://doi.org/10.1002/anie.200351102; (b) C. Siering, S. Grimme, S.R. Waldvogel, Direct assignment of enantiofacial discrimination on single heterocyclic substrates by self-induced CD (SICD). Chem. Eur. J. 11(6), 1877–1888 (2005).  https://doi.org/10.1002/chem.200401002; (c) M.C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, S.R. Waldvogel, Synthesis of rigid receptors based on Triphenylen Ketals. Eur. J. Org. Chem. (14), 2987–2999 (2005).  https://doi.org/10.1002/ejoc.200500108; (d) M. Bomkamp, C. Siering, K. Landrock, H. Stephan, R. Fröhlich, S.R. Waldvogel, Chem. Extraction experiments of radio-labelled xanthine derivatives by artificial receptors—deep insight into the association behaviour. Eur. J. 13(13), 3724–3732 (2007).  https://doi.org/10.1002/chem.200601231; (e) W. Schade, C. Bohling, K. Hohmann, C. Bauer, R. Orghici, S.R. Waldvogel, D. Scheel, Photonic sensors for security applications. Phot. Int. 1, 32–34 (2007); W. Schade, C. Bohling, K. Hohmann, C. Bauer, R. Orghici, S.R. Waldvogel, D. Scheel, Photonische Sensoren für die Sicherheitstechnik. Photonik 38, 70–73 (2006); (f) R. Orghici, U. Willer, M. Gierszewska, S.R. Waldvogel, W. Schade, Fiber optic evanescent-field-sensor for detection of explosives and CO2 dissolved in water. Appl. Phys. B 90, 355 (2008).  https://doi.org/10.1007/s00340-008-2932-7; (g) S. Börner, R. Orghici, S.R. Waldvogel, U. Willer, W. Schade, Evanescent field sensors and the implementation of waveguiding nanostructures. Appl. Opt. 48(4), B183 (2009).  https://doi.org/10.1364/ao.48.00b183; (h) U. Schwartz, R. Großer, K.-E. Piejko, B. Bömer, D. Arlt, Optisch aktive (Meth)-acrylamide, Polymere daraus, Verfahren zu ihrer Herstellung und ihre Verwendung zur Racematspaltung, DE3532356A1. Ger. Pat. Appl. (1987); (i) M. Grose-Bley, B. Bömer, R. Großer, D. Arlt, W. Lange, Optisch aktive schwefelhaltige aminosaeure-derivate, ihre herstellung, ihre polymerisation zu optisch aktiven polymeren und deren verwendung, DE4120695 Ger. Pat. Appl. (1992); (j) B. Bömer, R. Großer, W. Lange, U. Zweering, B. Köhler, W. Sirges, M. Grose-Bley, Chirale stationäre Phasen für die chromatographische Trennung von optischen Isomeren, DE19546136A1 Ger. Pat. Appl. (1997); (k) W. Lange, R. Grosser, B. Köhler, S. Michel, B. Bömer, U. Zweering, Chromatographic enantiomer of lactones, DE19714343A1 Ger. Pat. Appl. (1998); (l) J. Looft, T. Vössing, J. Ley, M. Backes, M. Blings, Substituted cyclopropane carbolic acid(3-methyl-cyclohexyl)amides as taste substances, EP1989944A1 Ger. Pat. Appl. (2008)
  37. 37.
    M.C. Schopohl, K. Bergander, O. Kataeva, R. Fröhlich, S.R. Waldvogel, Synthesis and characterization of enantiomerically pure menthylamines and their isocyanates. Synthesis 17, 2689–2694 (2003).  https://doi.org/10.1055/s-2003-42432CrossRefGoogle Scholar
  38. 38.
    U. Griesbach, S.R. Waldvogel, J. Kulisch, I.M. Malkowsky, Process for the preparation of pantoprazole sodium. PCT Int. Appl. WO2008003620 A2 20080110 (2008)Google Scholar
  39. 39.
    E. Rodrigo, S.R. Waldvogel, Very simple one-pot electrosynthesis of nitrones starting from nitro and aldehyde components. Green Chem. (2018) (in press).  https://doi.org/10.1039/c8gc00474a
  40. 40.
    J. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Modern strategies in electroorganic synthesis. Chem. Rev. 108(7), 2265–2299 (2008).  https://doi.org/10.1021/cr0680843CrossRefGoogle Scholar
  41. 41.
    (a) T. Lehmann, R. Schneider, C. Weckbecker, E. Dunach, S.Oliviero, Process for the production of 2-hydroxy-4-methylmercaptobutyric acid, WO 02/16671 (2002); (b) T. Lehmann, R. Schneider, C. Reufer, R. Sanzenbacher, in Chemie und Biochemie, ed. by J. Russow, H.J. Schäfer, GDCh-Monographie 23, 251–258 (2001)Google Scholar
  42. 42.
    C. Reufer, M. Hateley, T. Lehmann, C. Weckbecker, R. Sanzenbacher, J. Bilz, EP 1 631702 (2006)Google Scholar
  43. 43.
    T. Kojima, R. Obata, T. Saito, Y. Einaga, S. Nishiyama, Cathodic reductive coupling of methyl cinnamate on boron-doped diamond electrodes and synthesis of new neolignan-type products. Beilstein J. Org. Chem. 11, 200–203 (2015).  https://doi.org/10.3762/bjoc.11.21CrossRefGoogle Scholar
  44. 44.
    S.R. Waldvogel, S. Möhle, Versatile electrochemical C, H-amination via Zincke intermediates. Angew. Chem. Int. Ed. 54(22), 6398–6399 (2015).  https://doi.org/10.1002/anie.201502638CrossRefGoogle Scholar
  45. 45.
    (a) J.F. Hartwig, Discovery and understanding of transition-metal-catalyzed aromatic substitution reactions. Synlett 9, 1283–1294 (2006).  https://doi.org/10.1055/s-2006-939728; (b) J.F. Hartwig, Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature 455(7211), 314–322 (2008).  https://doi.org/10.1038/nature07369; (c) J.F. Hartwig, Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 41(11), 1534–1562 (2008).  https://doi.org/10.1021/ar800098p; (d) D.S. Surry, S.L. Buchwald, Biaryl phosphine ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47(34), 6338–6361 (2008).  https://doi.org/10.1002/anie.200800497; D.S. Surry, S.L. Buchwald, Biarylphosphanliganden in der palladiumkatalysierten aminierung. Angew. Chem. 120(34), 6438–6461 (2008).  https://doi.org/10.1002/ange.200800497; (e) D.S. Surry, S.L. Buchwald, Diamine ligands in copper-catalyzed reactions. Chem. Sci. 1, 13–31 (2010).  https://doi.org/10.1039/c0sc00107d; (f) D.S. Surry, S.L. Buchwald, Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. 2, 27–50 (2011).  https://doi.org/10.1039/c0sc00331j
  46. 46.
    (a) T.W. Lyons, M.S. Sanford, Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 110(2), 1147–1169 (2010).  https://doi.org/10.1021/cr900184e; (b) N. Kuhl, M.N. Hopkinson, J. Wencel-Delord, F. Glorius, Beyond directing groups: transition-metal-catalyzed C-H activation of simple arenes. Angew. Chem. Int. Ed. 51(41), 10236–10254 (2012).  https://doi.org/10.1002/anie.201203269; N. Kuhl, M.N. Hopkinson, J. Wencel-Delord, F. Glorius, Ohne dirigierende gruppen: übergangsmetallkatalysierte C‐H‐Aktivierung einfacher Arene. Angew. Chem. 124(41), 10382–10401 (2012).  https://doi.org/10.1002/ange.201203269
  47. 47.
    (a) Q. Shen, J.F. Hartwig, Palladium-Catalyzed coupling of ammonia and lithium amide with aryl halides. J. Am. Chem. Soc. 128(31), 10028–10029 (2006).  https://doi.org/10.1021/ja064005t; (b) G.D. Vo, J.F. Hartwig, Palladium-Catalyzed coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates: a general method for the preparation of primary arylamines. J. Am. Chem. Soc. 131(31), 11049–11061 (2009).  https://doi.org/10.1021/ja903049z
  48. 48.
    T. Morofuji, A. Shimizu, J.I. Yoshida, Electrochemical C-H amination: synthesis of aromatic primary amines via N-arylpyridinium ions. J. Am. Chem. Soc. 135(13), 5000–5003 (2013).  https://doi.org/10.1021/ja402083eCrossRefGoogle Scholar
  49. 49.
    S. Herold, S. Möhle, M. Zirbes, F. Richter, H. Nefzger, S.R. Waldvogel, Electrochemical amination of less-activated alkylated arenes using boron-doped diamond anodes. Eur. J. Org. Chem. 2016(7), 1274–1278 (2016).  https://doi.org/10.1002/ejoc.201600048CrossRefGoogle Scholar
  50. 50.
    S. Möhle, S. Herold, F. Richter, H. Nefzger, S.R. Waldvogel, Twofold electrochemical amination of naphthalene and related arenes. ChemElectroChem 4(9), 2196–2210 (2017).  https://doi.org/10.1002/celc.201700476CrossRefGoogle Scholar
  51. 51.
    A. Wiebe, B. Riehl, S. Lips, R. Franke, S.R. Waldvogel, Unexpected high robustness of electrochemical cross-coupling for a broad range of current density. Sci. Adv. 3(10), 1–7 (2017).  https://doi.org/10.1126/sciadv.aao3920CrossRefGoogle Scholar
  52. 52.
    O. Holloczki, A. Berkessel, J. Mars, M. Mezger, A. Wiebe, S.R. Waldvogel, B. Kirchner, The catalytic effect of fluoroalcohol mixtures depends on domain formation. ACS Catal. 7(3), 1846–1852 (2017).  https://doi.org/10.1021/acscatal.6b03090CrossRefGoogle Scholar
  53. 53.
    A. Kirste, B. Elsler, G. Schnakenburg, S.R. Waldvogel, Efficient anodic and direct phenol-arene C, C cross-coupling—the benign role of water or methanol. J. Am. Chem. Soc. 134(7), 3571–3576 (2012).  https://doi.org/10.1021/ja211005gCrossRefGoogle Scholar
  54. 54.
    B. Elsler, D. Schollmeyer, K.M. Dyballa, R. Franke, S.R. Waldvogel, Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols. Angew. Chem. Int. Ed. 53(20), 5210–5213 (2014).  https://doi.org/10.1002/anie.201400627CrossRefGoogle Scholar
  55. 55.
    B. Riehl, K.M. Dyballa, R. Franke, S.R. Waldvogel, Electro-organic synthesis as sustainable alternative for dehydrogenative cross-coupling of phenols and naphthols. Synthesis 49(02), 252–259 (2017).  https://doi.org/10.1055/s-0036-1588610CrossRefGoogle Scholar
  56. 56.
    B. Elsler, A. Wiebe, D. Schollmeyer, K.M. Dyballa, R. Franke, S.R. Waldvogel, Source of selectivity in oxidative cross-coupling of aryls by solvent effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol. Chem. Eur. J. 21(35), 12321–12325 (2015).  https://doi.org/10.1002/chem.201501604CrossRefGoogle Scholar
  57. 57.
    A. Wiebe, D. Schollmeyer, K.M. Dyballa, R. Franke, S.R. Waldvogel, Selective synthesis of partially protected non-symmetric biphenols by reagent- and metal-free anodic cross-coupling reaction. Angew. Chem. Int. Ed. 55(39), 11801–11805 (2016).  https://doi.org/10.1002/anie.201604321CrossRefGoogle Scholar
  58. 58.
    A. Wiebe, S. Lips, D. Schollmeyer, R. Franke, S.R. Waldvogel, Single and twofold metal- and reagent-free anodic c, c cross-coupling of phenols with thiophenes. Angew. Chem. Int. Ed. 56(46), 14727–14731 (2017).  https://doi.org/10.1002/anie.201708946CrossRefGoogle Scholar
  59. 59.
    S. Lips, B.A. Frontana-Uribe, M. Dörr, D. Schollmeyer, R. Franke, S.R. Waldvogel, Metal- and reagent-free anodic C, C cross-coupling of phenols with benzofurans leading to a furan metathesis. Chem. Eur. J. 24, 6057–6061 (2018).  https://doi.org/10.1002/chem.201800919

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemistry, Federal University of Rio Grande do NorteLagoa Nova, NatalBrazil
  2. 2.Institut für Organische ChemieJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations