Advertisement

Nitrogen Incorporated (Ultra)Nanocrystalline Diamond Films for Field Electron Emission Applications

  • Kamatchi Jothiramalingam Sankaran
  • Ken HaenenEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

Diamond is eminent to own a series of outstanding physical and chemical properties, thus rendering it to be a strong cold cathode material for field electron emission (FEE) applications. FEE from diamond materials comprises the supply of electrons to the conduction band of the materials, transport through bulk, and lastly emission at the surface. In this chapter, the enhancement in the FEE characteristics of nitrogen incorporated (ultra)nanocrystalline diamond ((U)NCD) films and their related nanostructures is discussed. Ion implantation, in situ impurity doping in plasma, and post plasma treatment processes have been employed to incorporate nitrogen in (U)NCD. The possible mechanism through which the change in microstructure enhances the FEE characteristics of nitrogen incorporated (U)NCD films/nanostructures is discussed.

Keywords

Diamond films Nitrogen incorporation Field electron emission Microstructure Plasma illumination 

Notes

Acknowledgements

The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K. J. Sankaran is a Postdoctoral Fellow of FWO.

References

  1. 1.
    D.M. Trucchi, N.A. Melosh, Electron-emission materials: advances, applications, and models. MRS Bull. 42, 488–492 (2017).  https://doi.org/10.1557/mrs.2017.142CrossRefGoogle Scholar
  2. 2.
    Y. Li, Y. Sun, J.T.W. Yeow, Nanotube field electron emission: principles, development, and applications. Nanotechnology 26, 242001 (2015).  https://doi.org/10.1088/0957-4484/26/24/242001CrossRefGoogle Scholar
  3. 3.
    M.L. Terranova, S. Orlanducci, M. Rossi, E. Tamburri, Nanodiamonds for field emission: state of the art. Nanoscale 7, 5094–5114 (2015).  https://doi.org/10.1039/c4nr07171aCrossRefGoogle Scholar
  4. 4.
    A.A. Talin, K.A. Dean, J.E. Jaskie, Field emission displays: a critical review. Solid State Electron. 45, 963–976 (2001).  https://doi.org/10.1016/S0038-1101(00)00279-3CrossRefGoogle Scholar
  5. 5.
    K. Subramanian, W.P. Kang, J.L. Davidson, N. Ghosh, K.F. Galloway, A review of recent results on diamond vacuum lateral field emission device operation in radiation environments. Microelectron. Engg. 88, 2924–2929 (2011).  https://doi.org/10.1016/j.mee.2011.03.161CrossRefGoogle Scholar
  6. 6.
    R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A 1928, 119, 173–181.  https://doi.org/10.1098/rspa.1928.0091
  7. 7.
    S. Sridhar, L. Ge, C.S. Tiwary, A.C. Hart, S. Ozden, K. Kalaga, S. Lei, S.V. Sridhar, R.K. Sinha, H. Harsh, K. Kordas, P.M. Ajayan, R. Vajtai, Enhanced field emission properties from CNT arrays synthesized on inconel superalloy. ACS Appl. Mater. Interfaces 6, 1986–1991 (2014).  https://doi.org/10.1021/am405026yCrossRefGoogle Scholar
  8. 8.
    K.J. Sankaran, K. Srinivasu, K.C. Leou, N.H. Tai, I.N. Lin, High stability electron field emitters made of nanocrystalline diamond coated carbon nanotubes. Appl. Phys. Lett. 103, 251601 (2013).  https://doi.org/10.1063/1.4850525CrossRefGoogle Scholar
  9. 9.
    K.S. Jung, S.H. Park, Enhanced field emission properties from carbon nanotube emitters on the nanopatterned substrate. J. Vac. Sci. Technol. B 35, 011802–011808 (2017).  https://doi.org/10.1116/1.4972119CrossRefGoogle Scholar
  10. 10.
    S. Santandrea, F. Giubileo, V. Grossi, S. Santucci, M. Passacantando, T. Schroeder, G. Lupina, A.D. Bartolomeo, Field emission from single and few-layer graphene flakes. Appl. Phys. Lett. 98, 163109–163112 (2011).  https://doi.org/10.1063/1.3579533CrossRefGoogle Scholar
  11. 11.
    C.X. Zhao, Y. Zhang, S.Z. Deng, N.S. Xu, J. Chen, Surface nitrogen functionality for the enhanced field emission of free-standing few-layer graphene nanowalls. J. Alloys Compd. 672, 433–439 (2016).  https://doi.org/10.1016/j.jallcom.2016.01.265CrossRefGoogle Scholar
  12. 12.
    S. Pandey, S. Patole, F. Gunes, G.D. Kwon, J.B. Yoo, P. Nikolaev, S. Arepalli, Improved electron field emission from morphologically disordered monolayer graphene. Appl. Phys. Lett. 100, 042108–043104 (2012).  https://doi.org/10.1063/1.3679135CrossRefGoogle Scholar
  13. 13.
    G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, Y. Li, Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 115, 2611–2615 (2011).  https://doi.org/10.1021/jp107996fCrossRefGoogle Scholar
  14. 14.
    J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 137, 7596–7599 (2015).  https://doi.org/10.1021/jacs.5b04057CrossRefGoogle Scholar
  15. 15.
    T.D. Corrigan, D.M. Gruen, A.R. Krauss, P. Zapol, R.P.H. Chang, The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond. Diam. Relat. Mater. 11, 43–48 (2002).  https://doi.org/10.1016/S0925-9635(01)00517-9CrossRefGoogle Scholar
  16. 16.
    O. Auciello, A.V. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diam. Relat. Mater. 19, 699–718 (2010).  https://doi.org/10.1016/j.diamond.2010.03.015CrossRefGoogle Scholar
  17. 17.
    O.A. Williams. M. Daenen, J. D’Haen, K. Haenen, J. Maes, V.V. Moschalkov, M. Nesladek, D.M. Gruen, Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam. Relat. Mater. 15, 654–658 (2006).  https://doi.org/10.1016/j.diamond.2005.12.009
  18. 18.
    K.J. Sankaran, P.T. Joseph, H.C. Chen, N.H. Tai, I.N. Lin, Investigation in the role of hydrogen on the properties of diamond films grown using Ar/H2/CH4 microwave plasma. Diam. Relat. Mater. 20, 232–237 (2011).  https://doi.org/10.1016/j.diamond.2010.12.018CrossRefGoogle Scholar
  19. 19.
    W. Zhu, C.A. Randall, A.R. Badzian, R. Messier, Graphite formation in diamond film deposition. J. Vac. Sci. Technol. A 7, 2315 (1989).  https://doi.org/10.1116/1.575935CrossRefGoogle Scholar
  20. 20.
    Y. Muto, T. Sugino, J. Shirafuji, Electrical conduction in undoped diamond films prepared by chemical vapor deposition. Appl. Phys. Lett. 59, 843–845 (1991).  https://doi.org/10.1063/1.105254CrossRefGoogle Scholar
  21. 21.
    D. Hong, M. Aslam, Field emission from p-type polycrystalline diamond films. J. Vac. Sci. Technol. B 13, 427–430 (1995).  https://doi.org/10.1116/1.587962CrossRefGoogle Scholar
  22. 22.
    D. Pradhan, I.N. Lin, Grain-size-dependent diamond-nondiamond composite films: characterization and field-emission properties. ACS Appl. Mater. Interfaces 1, 1444–1450 (2009).  https://doi.org/10.1021/am9001327CrossRefGoogle Scholar
  23. 23.
    J.B. Cui, J. Ristein, L. Ley, Low-threshold electron emission from diamond. Phys. Rev. B 60, 16135–16142 (1999).  https://doi.org/10.1103/PhysRevB.60.16135CrossRefGoogle Scholar
  24. 24.
    A.C. Ilie, A.C. Ferrari, T. Yagi, S.E. Rodil, J. Robertson, E. Barborini, P. Milani, Role of sp2/sp3 phase in field emission from nanostructured carbons. J. Appl. Phys. 90, 2024–2032 (2001).  https://doi.org/10.1063/1.1381001CrossRefGoogle Scholar
  25. 25.
    J. Robertson, Mechanisms of electron field emission from diamond, diamond-like carbon and nanostructured carbon. J. Vac. Sci. Technol. B 17, 659–665 (1999).  https://doi.org/10.1116/1.590613
  26. 26.
    C. Popov, A. Gushterov, L. Lingys, C. Sippel, J.P. Reithmaier, Structural and optical properties of ultrananocrystalline diamond/InGaAs/GaAs quantum dot structures. Thin Solid Films 518, 1489–1492 (2009).  https://doi.org/10.1016/j.tsf.2009.09.097CrossRefGoogle Scholar
  27. 27.
    V. Mortet, O. Elmazria, M. Nesladek, M.B. Assouar, G. Vanhoyland, J. D’Haen, M.D. Olieslaeger, P. Alnot, Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures. Appl. Phys. Lett. 81, 1720–1722 (2002).  https://doi.org/10.1063/1.1503875CrossRefGoogle Scholar
  28. 28.
    W. Zhu, G.P. Kochanski, S. Jin, Low-field electron emission from undoped nanostructured diamond. Science 282, 1471–1473 (1998).  https://doi.org/10.1126/science.282.5393.1471CrossRefGoogle Scholar
  29. 29.
    J.P. Thomas, H.C. Chen, N.H. Tai, I.N. Lin, Freestanding ultrananocrystalline diamond films with homojunction insulating layer on conducting layer and their high electron field emission properties. ACS Appl. Mater. Interfaces 3, 4007–4013 (2011).  https://doi.org/10.1021/am200867cCrossRefGoogle Scholar
  30. 30.
    V. Baranauskas, M.A. Sampaio, A.C. Peterlevitz, H.J. Ceragioli, J.C.R. Quispe, Field-emission properties of sulphur doped nanocrystalline diamonds. J. Phys. Conf. Series 61, 66–70 (2007).  https://doi.org/10.1088/1742-6596/61/1/014
  31. 31.
    T. Yamada, K. Okano, H. Yamaguchi, H. Kato, S. Shikata, C.E. Nebel, Field emission from reconstructed heavily phosphorus-doped homoepitaxial diamond (111). Appl. Phys. Lett. 88, 212114 (2006).  https://doi.org/10.1063/1.2206552CrossRefGoogle Scholar
  32. 32.
    P.M. Koinkar, S.S. Patil, T.G. Kim, D. Yonekura, M.A. More, D.S. Joag, R. Murakami, Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition. Appl. Surf. Sci. 257, 1854–1858 (2011).  https://doi.org/10.1016/j.apsusc.2010.08.121CrossRefGoogle Scholar
  33. 33.
    K.J. Sankaran, K. Srinivasu, C.J. Yeh, J.P. Thomas, S. Drijkoningen, P. Pobedinskas, B. Sundaravel, K.C. Leou, K.T. Leung, M.K. Van Bael, M. Schreck, I.N. Lin, K. Haenen, Field electron emission enhancement in lithium implanted and annealed nitrogen incorporated nanocrystalline diamond films. Appl. Phys. Lett. 110, 261602 (2017).  https://doi.org/10.1063/1.4990393CrossRefGoogle Scholar
  34. 34.
    K. Panda, J.J. Hyeok, J.Y. Park, K.J. Sankaran, S. Balakrishnan, I.N. Lin, Nanoscale investigation of enhanced electron field emission for silver ion implanted/postannealed ultrananocrystalline diamond films. Sci. Rep. 7, 16325 (2017).  https://doi.org/10.1038/s41598-017-16395-1CrossRefGoogle Scholar
  35. 35.
    J. Kurian, K.J. Sankaran, I.N. Lin, On the role of graphite in ultrananocrystalline diamond films used for electron field emitter applications. Phys. Status Solidi A 211, 2223–2237 (2014).  https://doi.org/10.1002/pssa.201431231CrossRefGoogle Scholar
  36. 36.
    K.J. Sankaran, H.C. Chen, B. Sundaravel, C.Y. Lee, N.H. Tai, I.N. Lin, Gold ion implantation induced high conductivity and enhanced electron field emission properties in ultrananocrystalline diamond films. Appl. Phys. Lett. 102, 061604 (2013).  https://doi.org/10.1063/1.4792744CrossRefGoogle Scholar
  37. 37.
    H.C. Chen, U. Palnitkar, B. Sundaravel, I.N. Lin, A.P. Singh, R.K. Rana, Enhancement of field emission properties in nanocrystalline diamond films upon 100 MeV silver ion irradiation. Diam. Relat. Mater. 18, 164–168 (2009).  https://doi.org/10.1016/j.diamond.2008.11.008CrossRefGoogle Scholar
  38. 38.
    K.J. Sankaran, S. Kunuku, K.C. Leou, N.H. Tai, I.N. Lin, Enhancement of the electron Field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment. ACS Appl. Mater. Interfaces 6, 14543–14551 (2014).  https://doi.org/10.1021/am503823nCrossRefGoogle Scholar
  39. 39.
    K.J. Sankaran, K. Panda, B. Sundaravel, H.C. Chen, I.N. Lin, C.Y. Lee, N.H. Tai, Engineering the interface characteristics of ultrananocrystalline diamond films grown on Au-coated Si substrates. ACS Appl. Mater. Interfaces 4, 4169–4176 (2012).  https://doi.org/10.1021/am300894uCrossRefGoogle Scholar
  40. 40.
    H.C. Chen, H.C. Chen, S.C. Lo, L.J. Lin, N.H. Tai, C.Y. Lee, I.N. Lin, Using an Au interlayer to enhance electron field emission properties of ultrananocrystalline diamond films. J. Appl. Phys. 112, 103711 (2012).  https://doi.org/10.1063/1.4766414CrossRefGoogle Scholar
  41. 41.
    G. Sreenivas, S.S. Ang, W.D. Brown, Effects of nitrogen doping on the growth and properties of plasma-enhanced chemical-vapor-deposited diamond-like-carbon films. J. Electron. Mater. 23, 569–575 (1994).  https://doi.org/10.1007/BF02670661CrossRefGoogle Scholar
  42. 42.
    S. Jin, T.D. Moustakas, Effect of nitrogen on the growth of diamond films. Appl. Phys. Lett. 65, 403–405 (1994).  https://doi.org/10.1063/1.112315CrossRefGoogle Scholar
  43. 43.
    S.J. Breuer, P.R. Briddon, Energy barrier to reorientation of the substitutional nitrogen in diamond. Phys. Rev. B 53, 7819–7822 (1996).  https://doi.org/10.1103/PhysRevB.53.7819CrossRefGoogle Scholar
  44. 44.
    J. Walker, Optical absorption and luminescence in diamond. Rep. Prog. Phys. 42, 1605–1659 (1979). https://doi.org/10.1088/0034-4885/42/10/001
  45. 45.
    C.A. Ammerlaan, E.A. Burgemeister, Reorientation of nitrogen in type-Ib diamond by thermal excitation and tunneling. Phys. Rev. Lett. 47, 954–957 (1981).  https://doi.org/10.1103/PhysRevLett.47.954CrossRefGoogle Scholar
  46. 46.
    P.K. Sitch, G. Jungnickel, M. Kaukonen, D. Porezag, Th. Frauenheim, M.R. Pederson, K.A. Jackson, A study of substitutional nitrogen impurities in chemical vapor deposition. J. Appl. Phys. 83, 4642–4646 (1998).  https://doi.org/10.1063/1.367249CrossRefGoogle Scholar
  47. 47.
    Z. Yu, U. Karlsson, A. Flodström, Influence of oxygen and nitrogen on the growth of hot-filament chemical vapor deposited diamond films. Thin Solid Films 342, 74–82 (1999).  https://doi.org/10.1016/S0040-6090(98)01352-2CrossRefGoogle Scholar
  48. 48.
    R. Locher, C. Wild, N. Herres, D. Behr, P. Koidl, Nitrogen stabilized <100> texture in chemical vapor deposited diamond films. Appl. Phys. Lett. 65, 34–36 (1994).  https://doi.org/10.1063/1.113064CrossRefGoogle Scholar
  49. 49.
    Y. Avigal, O. Glozman, I. Etsion, G. Halperin, A. Hoffman, [100]-textured diamond films for tribological applications. Diam. Relat. Mater. 6, 381–385 (1997).  https://doi.org/10.1016/S0925-9635(96)00625-5CrossRefGoogle Scholar
  50. 50.
    A.K. McCurdy, Phonon conduction in elastically anisotropic cubic crystals. Phys. Rev. B 26, 6971–6986 (1982).  https://doi.org/10.1103/PhysRevB.26.6971CrossRefGoogle Scholar
  51. 51.
    A.K. McCurdy, H.J. Maris, C. Elbaum, Anistropic heat conduction in cubic crystals in the boundary scattering regime. Phys. Rev. B 2, 4077–4083 (1970).  https://doi.org/10.1103/PhysRevB.2.4077CrossRefGoogle Scholar
  52. 52.
    W. Müller-Sebert, E. Wörner, F. Fuchs, C. Wild, P. Koidl, Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Appl. Phys. Lett. 68, 759–760 (1996).  https://doi.org/10.1063/1.116733CrossRefGoogle Scholar
  53. 53.
    M. Guerino, M. Massi, H.S. Maciel, C. Otani, R.D. Mansano, P. Verdonck, J. Libardi, The influence of nitrogen on the dielectric constant and surface hardness in diamond-like carbon (DLC) films. Diam. Relat. Mater. 13, 316–319 (2004).  https://doi.org/10.1016/j.diamond.2003.10.016CrossRefGoogle Scholar
  54. 54.
    J. Mort, M.A. Machonkin, K. Okumura, Compenstaion effects in nitrogen doped diamond thin films. Appl. Phys. Lett. 59, 3148–3150 (1991).  https://doi.org/10.1063/1.105767CrossRefGoogle Scholar
  55. 55.
    E. Boettger, A. Bluhm, X. Jiang, L. Schäfer, C.P. Klages, Investigation of the high-field conductivity and dielectric strength of nitrogen containing polycrystalline diamond films. J. Appl. Phys. 77, 6332–6337 (1995).  https://doi.org/10.1063/1.359103CrossRefGoogle Scholar
  56. 56.
    G. Davies, The A nitrogen aggregate in diamond-its symmetry and possible structure. J. Phys. C Solid State Phys. 9, L537–L542 (1976).  https://doi.org/10.1088/0022-3719/9/19/005CrossRefGoogle Scholar
  57. 57.
    S. Bohr, R. Haubner, B. Lux, Influence of nitrogen additions on hot-filament chemical vapor deposition of diamond. Appl. Phys. Lett. 68, 1075–1077 (1996).  https://doi.org/10.1063/1.115717CrossRefGoogle Scholar
  58. 58.
    M.W. Geis, J.C. Twichell, N.N. Efremow, K. Krohn, T.M. Lyszczarz, Comparison of electric field emission from nitrogen-doped, type Ib diamond, and boron doped diamond. Appl. Phys. Lett. 68, 2294–2296 (1996).  https://doi.org/10.1063/1.116168CrossRefGoogle Scholar
  59. 59.
    A.T. Sowers, B.L. Ward, S.L. English, R.J. Nemanich, Field emission properties of nitrogen-doped diamond films. J. Appl. Phys. 86, 3973–3982 (1999).  https://doi.org/10.1063/1.371316CrossRefGoogle Scholar
  60. 60.
    K. Okano, T. Mine, I. Saito, H. Yamaguchi, T. Yamada, A. Sawabe, Electron emission from heavily nitrogen-doped heteroepitaxial chemical vapor deposition diamond. J. Vac. Sci. Tech. B 22, 1327–1330 (2004).  https://doi.org/10.1116/1.1756585CrossRefGoogle Scholar
  61. 61.
    R. Kalish, C. Uzan-Saguy, B. Phiiosoph, V. Richter, J.P. Lagrange, E. Gheeraert, A. Deneuville, A.T. Collins, Nitrogen doping of diamond by ion implantation. Diam. Relat. Mater. 6, 516–520 (1997).  https://doi.org/10.1016/S0925-9635(96)00657-7CrossRefGoogle Scholar
  62. 62.
    Sh. Cherf, M. Chandran, Sh. Michaelson, S. Elfimchev, R. Akhvlediani, A. Hoffman, Nitrogen and hydrogen content, morphology and phase composition of hot filament chemical vapor deposited diamond films from NH3/CH4/H2 gas mixtures. Thin Solid Films 638, 264–268 (2017).  https://doi.org/10.1016/j.tsf.2017.07.060
  63. 63.
    B. Atakan, M. Beuger, K.K. Höinghaus, Nitrogen compounds and their influence on diamond deposition in flames. Phys. Chem. Chem. Phys. 1, 705–708 (1999).  https://doi.org/10.1039/A808850KCrossRefGoogle Scholar
  64. 64.
    Y. Kudo, Y. Sato, T. Masuzawa, T. Yamada, I. Saito, T. Yoshino, W.J. Chun, S. Yamasaki, K. Okano, Field emission from N-doped diamond doped with dimethylureaa. J. Vac. Sci. Tech. B 28, 506–510 (2010).  https://doi.org/10.1116/1.3385784CrossRefGoogle Scholar
  65. 65.
    W. Yuan, L. Fang, Z. Feng, Z. Chen, J. Wen, Y. Xiong, B. Wang, Highly conductive nitrogen-doped ultrananocrystalline diamond films with enhanced field emission properties: triethylamine as a new nitrogen source. J. Mater. Chem. C 4, 4778–4785 (2016).  https://doi.org/10.1039/c6tc00087hCrossRefGoogle Scholar
  66. 66.
    Y. Okumura, K. Kanayama, H. Nishiguchi, Synthesis of n-type semiconducting diamond films in acetylene flame with nitrogen doping. Proc. Combust. Inst. 000, 1–9 (2016).  https://doi.org/10.1016/j.proci.2016.06.158CrossRefGoogle Scholar
  67. 67.
    H. Yamada, A. Chayahara, Y. Mokuno, Effects of intentionally introduced nitrogen and substrate temperature on growth of diamond bulk single crystals. Jpn. J. Appl. Phys. 55, 01AC07 (2016). iopscience.iop.org/1347-4065/55/1S/01AC07
  68. 68.
    C.S. Yan, Y.K. Vohra, Multiple twinning and nitrogen defect center in chemical vapour deposited homoepitaxial diamond. Diam. Relat. Mater. 8, 2022–2031 (1999).  https://doi.org/10.1016/S0925-9635(99)00148-XCrossRefGoogle Scholar
  69. 69.
    D.S. Dandy, Influence of the gas phase on doping in diamond chemical vapor deposition. Thin Solid Films 381, 1–5 (2001).  https://doi.org/10.1016/S0040-6090(00)01355-9CrossRefGoogle Scholar
  70. 70.
    J.E. Butler, I.A. Oleynik, Mechanism for crystal twinning in the growth of diamond by chemical vapour deposition. Philos. Trans. R. Soc. A 366, 295–311 (2008).  https://doi.org/10.1098/rsta.2007.2152
  71. 71.
    T.V. Regemorter, K. Larsson, Effect of coadsorbed dopants on diamond initial growth processes: CH3 adsorption. J. Phys. Chem. A 112, 5429–5435 (2008).  https://doi.org/10.1021/jp711402eCrossRefGoogle Scholar
  72. 72.
    T.V. Regemorter, K. Larsson, Effect of a NH coadsorbate on the CH3 (or CH2) adsorption to a surface step on diamond (100). J. Phys. Chem. C 113, 19891–19896 (2009).  https://doi.org/10.1021/jp900853aCrossRefGoogle Scholar
  73. 73.
    T. Van Regemorter, K. Larsson, Effect of substitutional N on important chemical vapor deposition growth steps. J. Phys. Chem. A 113, 3274–3284 (2009).  https://doi.org/10.1021/jp811505wCrossRefGoogle Scholar
  74. 74.
    Z. Yiming, F. Larsson, K. Larsson, Effect of CVD diamond growth by doping with nitrogen. Theor. Chem. Acc. 133, 1432 (2014).  https://doi.org/10.1007/s00214-013-1432-y
  75. 75.
    G.Z. Cao, J.J. Schermer, W.J.P. van Enckevort, W.A.L.M. Elst, L.J. Giling, Growth of {100} textured diamond films by the addition of nitrogen. J. Appl. Phys. 79, 1357–1364 (1996).  https://doi.org/10.1063/1.361033CrossRefGoogle Scholar
  76. 76.
    P. Zapol, M. Sternberg, L.A. Curtiss, T. Frauenheim, D.M. Gruen, Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Phys. Rev. B 65, 045403 (2001).  https://doi.org/10.1103/PhysRevB.65.045403CrossRefGoogle Scholar
  77. 77.
    S. Bhattacharyya, Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond. Phys. Rev. B 70, 125412 (2004).  https://doi.org/10.1103/PhysRevB.70.125412CrossRefGoogle Scholar
  78. 78.
    S. Talapatra, J.Y. Cheng, N. Chakrapani, S. Trasobares, A. Cao, R. Vajtai, M.B. Huang, P.M. Ajayan, Ion irradiation induced structural modifications in diamond nanoparticles. Nanotechnology 17, 305–309 (2006). https://iopscience.iop.org/article/10.1088/0957-4484/17/1/052
  79. 79.
    S. Prawer, R. Kalish, Ion-beam-induced transformation of diamond. Phys. Rev. B 51, 15711–15722 (1995).  https://doi.org/10.1103/PhysRevB.51.15711CrossRefGoogle Scholar
  80. 80.
    J.F. Prins, Ion-implanted structures and doped layers in diamond. Mater. Sci. Rep. 7, 275–364 (1992).  https://doi.org/10.1016/0920-2307(92)90001-HCrossRefGoogle Scholar
  81. 81.
    F. Fontaine, C. Uzan-Saguy, B. Philosoph, R. Kalish, Boron implantation/in situ annealing procedure for optimal p-type properties of diamond. Appl. Phys. Lett. 68, 2264–2266 (1996).  https://doi.org/10.1063/1.115879CrossRefGoogle Scholar
  82. 82.
    E.J. Correa, Y. Wu, J.G. Wen, R. Chandrasekharan, M.A. Shannon, Electrical conduction in undoped ultrananocrystalline diamond thin films and its dependence on chemical composition and crystalline structure. J. Appl. Phys. 102, 113706 (2007).  https://doi.org/10.1063/1.2816214
  83. 83.
    W. Zhu, G.P. Kochanski, S. Jin, L. Seibles, D.C. Jacobson, M. McCormack, A.E. White, Electron field emission from ion-implanted diamond. Appl. Phys. Lett. 67, 1157–1159 (1995).  https://doi.org/10.1063/1.114993CrossRefGoogle Scholar
  84. 84.
    P.M. Koinkar, R.S. Khairnar, S.A. Khan, R.P. Gupta, D.K. Avasthi, M.A. More, Influence of high energy ion irradiation on the field emission characteristics of CVD diamond films. Nucl. Instrum. Methods B 244, 217–220 (2006).  https://doi.org/10.1016/j.nimb.2005.11.020CrossRefGoogle Scholar
  85. 85.
    J.J. Li, W.T. Zheng, C.Z. Gu, Z.S. Jin, G.R. Gu, X.X. Mei, Z.X. Mu, C. Dong, Field emission from nitrogen-implanted CVD diamond film grown on silicon wafer. Appl. Phys. A 81, 357–361 (2005).  https://doi.org/10.1007/s00339-004-2974-6CrossRefGoogle Scholar
  86. 86.
    Y.C. Chen, X.Y. Zhong, B. Kabius, J.M. Hiller, N.H. Tai, I.N. Lin, Improvement of field emission performance on nitrogen ion implanted ultrananocrystalline diamond films through visualization of structure modifications. Diam. Relat. Mater. 20, 238–241 (2011).  https://doi.org/10.1016/j.diamond.2010.12.017CrossRefGoogle Scholar
  87. 87.
    P.T. Joseph, N.H. Tai, C.Y. Lee, H. Niu, W.F. Pong, I.N. Lin, Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films. J. Appl. Phys. 103(4), 043720 (2008).  https://doi.org/10.1063/1.2885348CrossRefGoogle Scholar
  88. 88.
    K. Panda, B. Sundaravel, B.K. Panigrahi, P. Magudapathy, D. Nandagopala Krishna, K.G.M. Nair, H.C. Chen, I.N. Lin, Structural and electronic properties of nitrogen ion implanted ultra nanocrystalline diamond surfaces. J. Appl. Phys. 110, 044304 (2011).  https://doi.org/10.1063/1.3622517
  89. 89.
    P.T. Joseph, N.H. Tai, C.H. Chen, H. Niu, H.F. Cheng, W.F. Pong, I.N. Lin, On the mechanism of enhancement on electron field emission properties for ultrananocrystalline diamond films due to ion implantation. J. Phys. D Appl. Phys. 42(10), 105403 (2009).  https://doi.org/10.1088/0022-3727/42/10/105403CrossRefGoogle Scholar
  90. 90.
    T.J. Palathinkal, N.H. Tai, C.Y. Lee, H. Niu, H.F. Cheng, W.F. Pong, I.N. Lin, Field emission enhancement in ion implanted ultra-nanocrystalline diamond films. Plasma Process. Polym. 6, S834–S839 (2009).  https://doi.org/10.1002/ppap.200930107CrossRefGoogle Scholar
  91. 91.
    K.J. Sankaran, P.T. Joseph, N.H. Tai, I.N. Lin, High dose N ion implantation effects on surface treated UNCD films. Diam. Relat. Mater. 19, 927–931 (2010).  https://doi.org/10.1016/j.diamond.2010.02.027CrossRefGoogle Scholar
  92. 92.
    P.T. Joseph, N.H. Tai, C.H. Chen, H. Niu, H.F. Cheng, U.A. Palnitkar, I.N. Lin, Field emission enhancement in ultrananocrystalline diamond films by in situ heating during single or multienergy ion implantation processes. J. Appl. Phys. 105(12), 123710 (2009).  https://doi.org/10.1063/1.3152790CrossRefGoogle Scholar
  93. 93.
    P.T. Joseph, H.C. Chen, C.H. Chen, H. Niu, N.H. Tai, I.N. Lin, Nanostair formation and Field emission enhancement on high dose N-ion-implanted ultrananocrystalline diamond pyramid tips. Mater. Express 1, 68–73 (2011).  https://doi.org/10.1166/mex.2011.1009CrossRefGoogle Scholar
  94. 94.
    J. Kurian, K.J. Sankaran, J.P. Thomas, N.H. Tai, H.C. Chen, I.N. Lin, The role of nanographitic phase on enhancing the electron field emission properties of hybrid granular structured diamond films: the electron energy loss spectroscopic studies. J. Phys. D Appl. Phys. 47, 415303 (2014).  https://doi.org/10.1088/0022-3727/47/41/415303CrossRefGoogle Scholar
  95. 95.
    C. Pan, C.J. Chu, J.L. Margrave, R.H. Hague, Chlorine-activated diamond chemical vapor deposition. J. Electrochem. Soc. 141, 3246–3249 (1994).  https://doi.org/10.1149/1.2059312CrossRefGoogle Scholar
  96. 96.
    K. Okano, S. Koizumi, S.R.P. Silva, G.A.J. Amaratunga, Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond. Nature 381, 140–141 (1996).  https://doi.org/10.1038/381140a0CrossRefGoogle Scholar
  97. 97.
    T. Masuzawa, Y. Sato, Y. Kudo, I. Saito, T. Yamada, A.T.T. Koh, D.H.C. Chua, T. Yoshino, W.J. Chun, S. Yamasaki, K. Okano, Correlation between low threshold emission and C–N bond in nitrogen-doped diamond films. J. Vac. Sci. Tech. B 29, 02B119 (2011).  https://doi.org/10.1116/1.3569821CrossRefGoogle Scholar
  98. 98.
    P. Ball, Diamond films put on display. Nature 381, 116 (1996)CrossRefGoogle Scholar
  99. 99.
    R. Samlenski, C. Haug, R. Brenn, C. Wild, R. Locher, P. Koidl, Incorporation of nitrogen in chemical vapor deposition diamond. Appl. Phys. Lett. 67, 2798–2800 (1995).  https://doi.org/10.1063/1.114788CrossRefGoogle Scholar
  100. 100.
    M. Ficek, K.J. Sankaran, J. Ryl, R. Bogdanowicz, I.N. Lin, K. Haenen, K. Darowicki, Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2 plasma enhanced chemical vapor deposition. Appl. Phys. Lett. 108, 241906 (2016).  https://doi.org/10.1063/1.4953779CrossRefGoogle Scholar
  101. 101.
    M.A. Lobaev, A.M. Gorbachev, S.A. Bogdanov, A.L. Vikharev, D.B. Radishev, V.A. Isaev, V.V. Chernov, M.N. Drozdov, Influence of CVD diamond growth conditions on nitrogen incorporation. Diam. Relat. Mater. 72, 1–6 (2017).  https://doi.org/10.1016/j.diamond.2016.12.011CrossRefGoogle Scholar
  102. 102.
    S. Jin, T.D. Moustakas, Effect of nitrogen on the growth of diamond films. Appl. Phys. Lett. 63, 2354–2356 (1993).  https://doi.org/10.1063/1.112315CrossRefGoogle Scholar
  103. 103.
    Q. Sun, J. Wang, J. Weng, F. Liu, Surface structure and electric properties of nitrogen incorporated NCD films. Vacuum 137, 155–162 (2017).  https://doi.org/10.1016/j.vacuum.2016.12.040CrossRefGoogle Scholar
  104. 104.
    A. Badzian, T. Badzian, S.T. Lee, Synthesis of diamond from methane and nitrogen mixture. Appl. Phys. Lett. 62, 3432–3434 (1993).  https://doi.org/10.1063/1.109039CrossRefGoogle Scholar
  105. 105.
    H. Chatei, J. Bougdira, M. ReÂmy, P. Alnot, C. Bruch, J.K. Kruger, Effect of nitrogen concentration on plasma reactivity and diamond growth in a H2-CH4-N2 microwave discharge. Diam. Relat. Mater. 6, 107–119 (1997).  https://doi.org/10.1016/S0925-9635(96)00588-2CrossRefGoogle Scholar
  106. 106.
    F. Silva, A. Gicquel, A. Tardieu, P. Cledat, Th. Chauveau, Control of an MPACVD reactor for polycrystalline textured diamond films synthesis: role of microwave power density. Diam. Relat. Mater. 5, 338–344 (1996).  https://doi.org/10.1016/0925-9635(95)00428-9
  107. 107.
    P.W. May, P.R. Burridge, C.A. Rego, R.S. Tsang, M.N.R. Ashfold, K.N. Rosser, R.E. Tanner, D. Cherns, R. Vincent, Investigation of the addition of nitrogen-containing gases to a hot filament diamond chemical vapour deposition reactor. Diam. Relat. Mater. 5, 354–358 (1996).  https://doi.org/10.1016/0925-9635(95)00379-7CrossRefGoogle Scholar
  108. 108.
    T. Vandevelde, M. Nesladek, C. Quaeyhaegens, L. Stals, Optical emission spectroscopy of the plasma during CVD diamond growth with nitrogen addition. Thin Solid Films 290, 143–147 (1996).  https://doi.org/10.1016/S0040-6090(96)09189-4CrossRefGoogle Scholar
  109. 109.
    T. Vandevelde, M. Nesladek, C. Quaeyhaegens, L. Stals, Optical emission spectroscopy of the plasma during microwave CVD of diamond thin films with nitrogen addition and relation to the thin film morphology. Thin Solid Films 308, 154–158 (1997).  https://doi.org/10.1016/S0040-6090(97)00408-2CrossRefGoogle Scholar
  110. 110.
    M.J. Krecmarová, V. Petrák, A. Taylor, K.J. Sankaran, I.N. Lin, A. Jäger, V. Gärtnerová, L. Fekete, J. Drahokoupil, F. Laufek, J. Vacík, P. Hubík, V. Mortet, M. Nesládek, Change of diamond film structure and morphology with N2 addition in MW PECVD apparatus with linear antenna delivery system. Phys. Status Solidi A 211, 2296–2301 (2014).  https://doi.org/10.1002/pssa.201431255CrossRefGoogle Scholar
  111. 111.
    K.L. Ma, W.J. Zhang, Y.S. Zou, Y.M. Chong, K.M. Leung, I. Bello, S.T. Lee, Electrical properties of nitrogen incorporated nanocrystalline diamond films. Diam. Relat. Mater. 15, 626–630 (2006).  https://doi.org/10.1016/j.diamond.2005.11.017CrossRefGoogle Scholar
  112. 112.
    K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films. J. Appl. Phys. 88, 2967–2974 (2000).  https://doi.org/10.1063/1.1287602CrossRefGoogle Scholar
  113. 113.
    K. Subramanian, W.P. Kang, J.L. Davidson, R.S. Takalkar, B.K. Choi, M. Howell, D.V. Kerns, Enhanced electron field emission from micropatterned pyramidal diamond tips incorporation CH4/H2/N2 plasma-deposited nanodiamond. Diam. Relat. Mater. 15, 1126–1131 (2006).  https://doi.org/10.1016/j.diamond.2005.12.047CrossRefGoogle Scholar
  114. 114.
    K.J. Sankaran, N.H. Tai, I.N. Lin, Microstructural evolution of diamond films from CH4/H2/N2 plasma and their enhanced electrical properties. J. Appl. Phys. 117, 075303 (2015).  https://doi.org/10.1063/1.4913258CrossRefGoogle Scholar
  115. 115.
    E. Rohrer, C.F.O. Graeff, R. Janssen, C.E. Nebel, H. Guettler, R. Zachai, Nitrogen-related dopant and defect states in CVD diamond. Phys. Rev. B. 54, 7874–7880 (1996).  https://doi.org/10.1103/PhysRevB.54.7874CrossRefGoogle Scholar
  116. 116.
    D. Zhou, A.R. Krauss, L.C. Qin, T.G. McCauley, D.M. Gruen, T.D. Corrigan, R.P.H. Chang, H. Gnaser, Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas. J. Appl. Phys. 82(9), 4546–4550 (1997).  https://doi.org/10.1063/1.366190CrossRefGoogle Scholar
  117. 117.
    J.E. Birrell, O. Auciello, J.M. Gibson, D.M. Gruen, J.A. Carlisle, Bonding structure in nitrogen doped ultrananocrystalline diamond. J. Appl. Phys. 93, 5606–5612 (2003).  https://doi.org/10.1063/1.1564880CrossRefGoogle Scholar
  118. 118.
    Y.C. Chen, N.H. Tai, I.N. Lin, Substrate temperature effects on the electron field emission properties of nitrogen doped ultra-nanocrystalline diamond. Diam. Relat. Mater. 17, 457–461 (2008).  https://doi.org/10.1016/j.diamond.2007.10.020CrossRefGoogle Scholar
  119. 119.
    C.R. Lin, W.H. Liao, D.H. Wei, J.S. Tsai, C.K. Chang, W.C. Fang, Formation of ultrananocrystalline diamond films with nitrogen addition. Diam. Relat. Mater. 20, 380–384 (2011).  https://doi.org/10.1016/j.diamond.2010.12.015CrossRefGoogle Scholar
  120. 120.
    N.M. Santos, T.M. Arantes, N.G. Ferreira, M.R. Baldan, Characterization of nitrogen doped diamond electrodes produced by hot filament chemical vapor deposition. Mat. Sci. Forum 802, 180–185 (2014).  https://doi.org/10.4028/www.scientific.net/MSF.802.180CrossRefGoogle Scholar
  121. 121.
    H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches. J. Appl. Phys. 83, 1730–1733 (1998).  https://doi.org/10.1063/1.366891CrossRefGoogle Scholar
  122. 122.
    O.A. Shenderova, D.W. Brenner, L.H. Yang, Atomistic simulations of structures and mechanical properties of polycrystalline diamond: symmetrical <001> tilt grain boundaries. Phys. Rev. B 60, 7043–7052 (1999).  https://doi.org/10.1103/PhysRevB.60.7043CrossRefGoogle Scholar
  123. 123.
    R.S. Tsang, C.A. Rego, P.W. May, M.N.R. Ashfold, K.N. Rosser, Examination of the effects of nitrogen on the CVD diamond growth mechanism using in situ molecular beam mass spectrometry. Diam. Relat. Mater. 6, 247–254 (1997).  https://doi.org/10.1016/S0925-9635(96)00647-4CrossRefGoogle Scholar
  124. 124.
    A. Afzal, C.A. Rego, W. Ahmed, R.I. Cherry, HFCVD diamond grown with added nitrogen: film characterization and gas-phase composition studies. Diam. Relat. Mater. 7, 1033–1038 (1998).  https://doi.org/10.1016/S0925-9635(98)00148-4CrossRefGoogle Scholar
  125. 125.
    S. Bhattacharyya, O. Auciello, J. Birrell, J.A. Carlisle, L.A. Curtiss, A.N. Goyette, D.M. Gruen, A.R. Krauss, J. Schlueter, A. Sumant, P. Zapol, Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 79, 1441–1443 (2001).  https://doi.org/10.1063/1.1400761CrossRefGoogle Scholar
  126. 126.
    O.A. Williams, S. Curat, J.E. Gerbi, D.M. Gruen, R.B. Jackman, n-type conductivity in ultrananocrystalline diamond films. Appl. Phys. Lett. 85, 1680–1682 (2004).  https://doi.org/10.1063/1.1785288CrossRefGoogle Scholar
  127. 127.
    J. Shalini, Y.C. Lin, T.H. Chang, K.J. Sankaran, H.C. Chen, I.N. Lin, C.Y. Lee, N.H. Tai, Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties. Electrochim. Acta 92, 9–19 (2013).  https://doi.org/10.1016/j.electacta.2012.12.078CrossRefGoogle Scholar
  128. 128.
    Y.C. Lin, K.J. Sankaran, Y.C. Chen, C.Y. Lee, H.C. Chen, I.N. Lin, N.H. Tai, Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature. Diam. Relat. Mater. 20, 191–195 (2011).  https://doi.org/10.1016/j.diamond.2010.11.026CrossRefGoogle Scholar
  129. 129.
    R. Arenal, P. Bruno, D.J. Miller, M. Bleuel, J. Lal, D.M. Gruen, Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films. Phys. Rev. B. 75, 195431 (2007).  https://doi.org/10.1103/PhysRevB.75.195431CrossRefGoogle Scholar
  130. 130.
    V.D. Frolov, S.M. Pimenov, V.I. Konov, V.I. Polyakov, A.I. Rukovishnikov, N.M. Rossukanyi, J.A. Carlisle, D.M. Gruen, Electronic properties of low-field-emitting ultrananocrystalline diamond films. Surf. Interface Anal. 36, 449–454 (2004).  https://doi.org/10.1002/sia.1709CrossRefGoogle Scholar
  131. 131.
    T. Ikeda, K. Teii, Origin of low threshold field emission from nitrogen-incorporated nanocrystalline diamond films. Appl. Phys. Lett. 94, 143102 (2009).  https://doi.org/10.1063/1.3115767CrossRefGoogle Scholar
  132. 132.
    Y.K. Liu, P.L. Tso, D. Pradhan, I.N. Lin, M. Clark, Y. Tzeng, Structural and electrical properties of nanocrystalline diamond (NCD) heavily doped by nitrogen. Diam. Relat. Mater. 14, 2059–2063 (2005).  https://doi.org/10.1016/j.diamond.2005.06.012CrossRefGoogle Scholar
  133. 133.
    K.J. Sankaran, J. Kurian, H.C. Chen, C.L. Dong, C.Y. Lee, N.H. Tai, I.N. Lin, Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma. J. Phys. D Appl. Phys. 45, 365303 (2012).  https://doi.org/10.1088/0022-3727/45/36/365303CrossRefGoogle Scholar
  134. 134.
    C.S. Wang, G.H. Tong, H.C. Chen, W.C. Shih, I.N. Lin, Effect of N2 addition in Ar plasma on the development of microstructure of ultra-nanocrystalline diamond films. Effect of N2 addition in Ar plasma on the development of microstructure of ultra-nanocrystalline diamond films. Diam. Relat. Mater. 19, 147–152 (2010).  https://doi.org/10.1016/j.diamond.2009.09.009
  135. 135.
    N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.N. Lin, M. Chu, A. Stamboulis, Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 3, 1032–1038 (2009).  https://doi.org/10.1021/nn900167pCrossRefGoogle Scholar
  136. 136.
    L. Sun, J. Gong, D. Zu, Z. Zhu, S. He, Diamond nanorods from carbon nanotubes. Adv. Mater. 16, 1849–1853 (2004).  https://doi.org/10.1002/adma.200400429CrossRefGoogle Scholar
  137. 137.
    Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424–11431 (2001).  https://doi.org/10.1021/jp012085bCrossRefGoogle Scholar
  138. 138.
    J. Singh, Nucleation and growth mechanism of diamond during hot-filament chemical vapour deposition. J. Mater. Sci. 29, 2761–2766 (1994).  https://doi.org/10.1007/BF00356830CrossRefGoogle Scholar
  139. 139.
    S.A. Rakha, G. Yu, J. Cao, S. He, X. Zhou, Influence of CH4 on the morphology of nanocrystalline diamond films deposited by Ar rich microwave plasma. J. Appl. Phys. 107, 114324 (2010).  https://doi.org/10.1063/1.3410804CrossRefGoogle Scholar
  140. 140.
    I.I. Vlasov, O.I. Lebedev, V.G. Ralchenko, Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19, 4058–4062 (2007).  https://doi.org/10.1002/adma.200700442CrossRefGoogle Scholar
  141. 141.
    A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited Layers. Philips Res. Rep. 22, 267–268 (1967)Google Scholar
  142. 142.
    P.C. Redfern, D.A. Horner, L.A. Curtiss, D.M. Gruen, Theoretical studies of growth of diamond (110) from dicarbon. J. Phys. Chem. 100, 11654–11663 (1996).  https://doi.org/10.1021/jp953165gCrossRefGoogle Scholar
  143. 143.
    M. Sternbergt, P. Zapol, T. Frauenheimt, J.A. Carlisle, D.M. Gruen, L.A. Curtiss, Density functional based tight binding study of C2 and CN deposition on (100) diamond surface. Mat. Res. Soc. Symp. Proc. 675, W12 (2001).  https://doi.org/10.1557/PROC-675-W12.11.1CrossRefGoogle Scholar
  144. 144.
    S.A. Kajihara, A. Antonelli, J. Bernhol, R. Car, Nitrogen and potential n-type dopants in diamond. Phys. Rev. Lett. 66, 2010–2013 (1991).  https://doi.org/10.1103/PhysRevLett.66.2010CrossRefGoogle Scholar
  145. 145.
    K.J. Sankaran, Y.F. Lin, W.B. Jian, H.C. Chen, K. Panda, B. Sundaravel, C.L. Dong, N.H. Tai, I.N. Lin, Structural and electrical properties of conducting diamond nanowires. ACS Appl. Mater. Interfaces 5, 1294–1301 (2013).  https://doi.org/10.1021/am302430pCrossRefGoogle Scholar
  146. 146.
    R.L. Harniman, O.J.L. Fox, W. Janssen, S. Drijkoningen, K. Haenen, P.W. May, Direct observation of electron emission from grain boundaries in CVD diamond by PeakForce-controlled tunnelling atomic force microscopy. Carbon 94, 386–395 (2015).  https://doi.org/10.1016/j.carbon.2015.06.082CrossRefGoogle Scholar
  147. 147.
    K. Panda, K.J. Sankaran, B.K. Panigrahi, N.H. Tai, I.N. Lin, Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films. ACS Appl. Mater. Interfaces 6, 8531–8541 (2014).  https://doi.org/10.1021/am501398sCrossRefGoogle Scholar
  148. 148.
    K.N. Kushita, K. Hojou, S. Furuno, H. Otsu, In situ EELS observation of diamond during hydrogen-ion bombardment. J. Nucl. Mater. 191–194, 346–350 (1992).  https://doi.org/10.1016/S0022-3115(09)80063-9CrossRefGoogle Scholar
  149. 149.
    Y.C. Chu, C.H. Tu, C. Liu, Y. Tzeng, O. Auciello, Ultrananocrystalline diamond nano-pillars synthesized by microwave plasma bias-enhanced nucleation and bias-enhanced growth in hydrogen-diluted methane. J. Appl. Phys. 112, 124307 (2012).  https://doi.org/10.1063/1.4769861CrossRefGoogle Scholar
  150. 150.
    X.Y. Zhong, Y.C. Chen, N.H. Tai, I.N. Lin, J.M. Hiller, O. Auciello, Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: an approach to interfacial chemistry analysis via chemical bonding mapping. J. Appl. Phys. 105, 034311 (2009).  https://doi.org/10.1063/1.3068366CrossRefGoogle Scholar
  151. 151.
    C.Z. Gu, X. Jiang, Deposition and characterization of nanocrystalline diamond films prepared by ion bombardment-assisted method. J. Appl. Phys. 88, 1788–1793 (2000).  https://doi.org/10.1063/1.1305460CrossRefGoogle Scholar
  152. 152.
    N. Jiang, K. Sugimoto, K. Eguchi, T. Inaoka, Y. Shintani, H. Makita, A. Hatta, A. Hiraki, Reducing the grain size for fabrication of nanocrystalline diamond films. J. Cryst. Growth 222, 591–594 (2001).  https://doi.org/10.1016/S0022-0248(00)00972-6CrossRefGoogle Scholar
  153. 153.
    M. Schreck, T. Baur, R. Fehling, M. Mialler, B. Stritzker, A. Bergmaier, G. Dollinger, Modification of diamond film growth by a negative bias voltage in microwave plasma chemical vapor deposition. Diam. Relat. Mater. 7, 293–298 (1998).  https://doi.org/10.1016/S0925-9635(97)00260-4CrossRefGoogle Scholar
  154. 154.
    V. Mortet, L. Zhang, M. Eckert, J. D’Haen, A. Soltani, M. Moreau, D. Troadec, E. Neyts, J.D. Jaeger, J. Verbeeck, A. Bogaerts, G.V. Tendeloo, K. Haenen, P. Wagner, Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth: Experimental and theoretical study. Phys. Status Solidi A 209, 1675–1682 (2012).  https://doi.org/10.1002/pssa.201200581CrossRefGoogle Scholar
  155. 155.
    K.Y. Teng, H.C. Chen, G.C. Tzeng, C.Y. Tang, H.F. Cheng, I.N. Lin, Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films. J. Appl. Phys. 111, 053701 (2012).  https://doi.org/10.1063/1.3687918CrossRefGoogle Scholar
  156. 156.
    A. Saravanan, B.R. Huang, K.J. Sankaran, G. Keiser, J. Kurian, N.H. Tai, I.N. Lin, Structural modification of nanocrystalline diamond films via positive/negative bias enhanced nucleation and growth processes for improving their electron field emission properties. J. Appl. Phys. 117, 215307 (2015).  https://doi.org/10.1063/1.4921875CrossRefGoogle Scholar
  157. 157.
    A. Saravanan, B.R. Huang, K.J. Sankaran, N.H. Tai, I.N. Lin, Highly conductive diamond—graphite nanohybrid films with enhanced electron field emission and microplasma illumination properties. ACS Appl. Mater. Interfaces 7, 14035–14042 (2015).  https://doi.org/10.1021/acsami.5b03166CrossRefGoogle Scholar
  158. 158.
    K.J. Sankaran, B.R. Huang, A. Saravanan, D. Manoharan, N.H. Tai, I.N. Lin, Nitrogen incorporated ultrananocrystalline diamond microstructures from bias-enhanced microwave N2/CH4-plasma chemical vapor deposition. Plasma Process. Polym. 13, 419–428 (2016).  https://doi.org/10.1002/ppap.201500079CrossRefGoogle Scholar
  159. 159.
    T.H. Chang, K. Panda, B.K. Panigrahi, S.C. Lou, C. Chen, H.C. Chen, I.N. Lin, N.H. Tai, Electrophoresis of nanodiamond on the growth of ultrananocrystalline diamond films on silicon nanowires and the enhancement of the electron field emission properties. J. Phys. Chem. C 116, 19867–19876 (2012).  https://doi.org/10.1021/jp306086bCrossRefGoogle Scholar
  160. 160.
    C.J. Yeh, D. Manoharan, H.T. Chang, K.C. Leou, I.N. Lin, Synthesis of ultra-nano-carbon composite materials with extremely high conductivity by plasma post-treatment process of ultrananocrystalline diamond films. Appl. Phys. Lett. 107, 083104 (2015).  https://doi.org/10.1063/1.4929587CrossRefGoogle Scholar
  161. 161.
    A. Saravanan, B.R. Huang, D. Manoharan, D. Kathiravan, I.N. Lin, Engineered design and fabrication of long lifetime multifunctional devices based on electrically conductive diamond ultrananowire multifinger integrated cathodes. J. Mater. Chem. C 4, 9727–9737 (2016).  https://doi.org/10.1039/C6TC03340GCrossRefGoogle Scholar
  162. 162.
    U. Yogeswaran, S.M. Chen, A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8, 290–313 (2008).  https://doi.org/10.3390/s8010290CrossRefGoogle Scholar
  163. 163.
    M.M. Rahman, A. Ahammad, J.H. Jin, S.J. Ahn, J.J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855–4886 (2010).  https://doi.org/10.3390/s100504855CrossRefGoogle Scholar
  164. 164.
    C.H. Hsu, H.C. Lo, C.F. Chen, C.T. Wu, J.S. Hwang, D. Das, J. Tsai, L.C. Chen, K.H. Chen, Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Lett. 4, 471–475 (2004).  https://doi.org/10.1021/nl049925tCrossRefGoogle Scholar
  165. 165.
    Q. Wang, P. Subramanian, M. Li, W.S. Yeap, K. Haenen, Y. Coffinier, R. Boukherroub, S. Szunerits, Non-enzymatic glucose sensing on long and short diamond nanowire electrodes. Electrochem. Commun. 34, 286–290 (2013).  https://doi.org/10.1016/j.elecom.2013.07.014CrossRefGoogle Scholar
  166. 166.
    H. Shiomi, Reactive ion etching of diamond in O2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes. Jpn. J. Appl. Phys. 36, 7745 (1997).  https://doi.org/10.1143/JJAP.36.7745CrossRefGoogle Scholar
  167. 167.
    H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, A. Fujishima, Fabrication of a nanostructured diamond honeycomb film. Adv. Mater. 12, 444–447 (2000).  https://doi.org/10.1002/(SICI)1521-4095(200003)12:63.3.CO;2-BCrossRefGoogle Scholar
  168. 168.
    Y. Zou, Y. Yang, W. Zhang, Y. Chong, B. He, I. Bello, S. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92, 053105 (2008).  https://doi.org/10.1063/1.2841822CrossRefGoogle Scholar
  169. 169.
    K.J. Sankaran, S. Kunuku, S.C. Lou, J. Kurian, H.C. Chen, C.Y. Lee, N.H. Tai, K.C. Leou, C. Chen, I.N. Lin, Microplasma illumination enhancement of vertically aligned conducting ultrananocrystalline diamond nanorods. Nanoscale Res. Lett. 7, 522 (2012).  https://doi.org/10.1186/1556-276X-7-522CrossRefGoogle Scholar
  170. 170.
    W.J. Zhang, Y. Wu, C.Y. Cha, W.K. Wong, X.M. Meng, I. Bello, Y. Lifshitz, S.T. Lee, Structuring single- and nano-crystalline diamond cones. Diam. Relat. Mater. 13, 1037–1043 (2004).  https://doi.org/10.1016/j.diamond.2003.10.007CrossRefGoogle Scholar
  171. 171.
    J. Birgit, M. Hausmann, M. Khan, Y. Zhang, T.M. Babinec, K. Martinick, M. McCutcheon, P.R. Hemmer, M. Loncar, Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 19, 621–629 (2010).  https://doi.org/10.1016/j.diamond.2010.01.011CrossRefGoogle Scholar
  172. 172.
    N. Yang, U. Hiroshi, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206, 2048–2056 (2009).  https://doi.org/10.1016/j.diamond.2010.01.011CrossRefGoogle Scholar
  173. 173.
    J. Liu, V.V. Zhirnov, A.F. Myers, G.J. Wojak, W.B. Choi, J.J. Hren, S.D. Wolter, M.T. McClure, B.R. Stoner, J.T. Glass, Field emission characteristics of diamond coated silicon field emitters. J. Vac. Sci. Technol. B 13(2), 422–426 (1995).  https://doi.org/10.1116/1.587961CrossRefGoogle Scholar
  174. 174.
    R. Ramaneti, K.J. Sankaran, S. Korneychuk, C.J. Yeh, G. Degutis, K.C. Leou, J. Verbeeck, M.K. Van Bael, I.N. Lin, K. Haenen, Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties. APL Mat. 5, 066102 (2017).  https://doi.org/10.1063/1.4985107CrossRefGoogle Scholar
  175. 175.
    K.J. Sankaran, N.H. Tai, I.N. Lin, Flexible electron field emitters fabricated using conducting ultrananocrystalline diamond pyramidal microtips on polynorbornene films. Appl. Phys. Lett. 104, 031601 (2014).  https://doi.org/10.1063/1.4862891CrossRefGoogle Scholar
  176. 176.
    M. Nirmal, L. Brus, Luminescence photophysics in seminconductor nanocrystals. Acc. Chem. Res. 32, 407–414 (1999).  https://doi.org/10.1021/ar9700320CrossRefGoogle Scholar
  177. 177.
    X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6, 5531–5538 (2012).  https://doi.org/10.1021/nn301454qCrossRefGoogle Scholar
  178. 178.
    K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, A. Mascarenhas, Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248–3253 (2008).  https://doi.org/10.1002/adma.200800145CrossRefGoogle Scholar
  179. 179.
    Y. Tak, H. Kim, D. Lee, K. Yong, Type-II CdS nanopartice-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity. Chem. Commun., 4585–4587 (2008).  https://doi.org/10.1039/b810388g
  180. 180.
    J. Schrier, D.O. Demchenko, L.W. Wang, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltatic applications. Nano Lett. 7, 2377–2382 (2007).  https://doi.org/10.1021/nl071027kCrossRefGoogle Scholar
  181. 181.
    U.K. Gautam, X. Fang, Y. Bando, J. Zhan, D. Golberg, Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube–in nanowire core–shell heterostructures. ACS Nano 2, 1015–1021 (2008).  https://doi.org/10.1021/nn800013bCrossRefGoogle Scholar
  182. 182.
    J. Lin, Y. Huang, Y. Bando, C. Tang, C. Li, D. Golberg, Boron nitride nanotubes and nanosheets. ACS Nano 4, 2452–2458 (2010).  https://doi.org/10.1021/nn1006495CrossRefGoogle Scholar
  183. 183.
    G. Li, Y. Jiang, Y. Zhang, X. Lan, T. Zhai, G.C. Yi, High-performance photodetectors and enhanced field-emission of CdS nanowire arrays on CdSe single-crystalline sheets. J. Mater. Chem. C 2, 8252–8258 (2014).  https://doi.org/10.1039/C4TC01503GCrossRefGoogle Scholar
  184. 184.
    Q. Xie, C. Wang, X. Xu, J. Liu, J. Zhang, Formation of Ge nanosheets decorated hierarchical ZnSe/GeSe nanowire heterostructures. Jpn. J. Appl. Phys. 49, 025001 (2010).  https://doi.org/10.1143/JJAP.49.025001CrossRefGoogle Scholar
  185. 185.
    X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, C.M. Lieber, InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3215–3218 (2007).  https://doi.org/10.1021/nl072024aCrossRefGoogle Scholar
  186. 186.
    J. Xiong, C. Han, W. Li, Q. Sun, J. Chen, S. Chou, Z. Li, S. Dou, Ambient synthesis of a multifunctional 1D/2D hierarchical Ag–Ag2S nanowire/nanosheet heterostructure with diverse applications. CrystEngComm 18, 930–937 (2016).  https://doi.org/10.1039/C5CE02134KCrossRefGoogle Scholar
  187. 187.
    J. Yang, J. Liang, G. Zhang, J. Li, H. Liu, Z. Shen, Heterostructures of MoS2 nanofilms on TiO2 nanorods used as field emitters. Vacuum 123, 17–32 (2016).  https://doi.org/10.1016/j.vacuum.2015.10.004CrossRefGoogle Scholar
  188. 188.
    X. Yang, Z. Li, F. He, M. Liu, B. Bai, W. Liu, Z. Qiu, H. Zhou, C. Li, Q. Dai, Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties. Small 11, 3710–3716 (2015).  https://doi.org/10.1039/C6NR01199CCrossRefGoogle Scholar
  189. 189.
    K.J. Sankaran, M. Afsal, S.C. Lou, H.C. Chen, C. Chen, C.Y. Lee, L.J. Chen, N.H. Tai, Electron field emission enhancement of vertically aligned ultrananocrystalline diamond-coated ZnO core–shell heterostructured nanorods. Small 10, 179–185 (2014).  https://doi.org/10.1002/smll.201301293CrossRefGoogle Scholar
  190. 190.
    T.H. Chang, P.Y. Hsieh, S. Kunuku, S.C. Lou, D. Manoharan, K.C. Leou, I.N. Lin, N.H. Tai, High stability electron field emitters synthesized via the combination of carbon nanotubes and N2-plasma grown ultrananocrystalline diamond films. ACS Appl. Mater. Interfaces 7, 27526–27538 (2015).  https://doi.org/10.1021/acsami.5b09778CrossRefGoogle Scholar
  191. 191.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007).  https://doi.org/10.1038/namt1849CrossRefGoogle Scholar
  192. 192.
    Z.S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.M. Cheng, Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 21, 1756–1760 (2009).  https://doi.org/10.1002/adma.200802560CrossRefGoogle Scholar
  193. 193.
    U.A. Palnitkar, R.V. Kashid, M.A. More, D.S. Joag, L.S. Panchakarla, C.N.R. Rao, Remarkably low turn-on field emission in undoped, nitrogen-doped, and boron-doped graphene. Appl. Phys. Lett. 97, 063102 (2010).  https://doi.org/10.1063/1.3464168CrossRefGoogle Scholar
  194. 194.
    N. Soin, S.S. Roy, S. Roy, K.S. Hazra, D.S. Misra, T.H. Lim, C.J. Hetherington, J.A. McLaughlin, Enhanced and stable field emission from in situ nitrogen-doped few-layered graphene nanoflakes. J. Phys. Chem. C 115, 5366–5372 (2011).  https://doi.org/10.1021/jp110476mCrossRefGoogle Scholar
  195. 195.
    A.T.H. Chuang, J. Robertson, B.O. Boskovic, K.K.K. Koziol, Three-dimensional carbon nanowall structures. Appl. Phys. Lett. 90, 123107 (2007).  https://doi.org/10.1063/1.2715441CrossRefGoogle Scholar
  196. 196.
    K.J. Sankaran, T.H. Chang, S.K. Bikkarolla, S.S. Roy, P. Papakonstantinou, S. Drijkoningen, P. Pobedinskas, M.K. Van Bael, N.H. Tai, I.N. Lin, K. Haenen, Growth, structural and plasma illumination properties of nanocrystalline diamond-decorated graphene nanoflakes. RSC Adv. 6, 63178–63184 (2016).  https://doi.org/10.1039/C6RA07116CCrossRefGoogle Scholar
  197. 197.
    K.J. Sankaran, C.J. Yeh, S. Drijkoningen, P. Pobedinskas, M.K. Van Bael, K.C. Leou, I.N. Lin, K. Haenen, Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid. Nanotechnology 28, 065701 (2017).  https://doi.org/10.1088/1361-6528/aa5378CrossRefGoogle Scholar
  198. 198.
    Z. Remes. M. Nesladek, K. Haenen, K. Watanabe, T. Taniguchi, The optical absorption and photoconductivity spectra of hexagonal boron nitride single crystals. Phys. Status Solidi A 202, 2229–2233 (2005).  https://doi.org/10.1002/pssa.200561902
  199. 199.
    K.J. Sankaran, D.Q. Hoang, S. Kunuku, S. Korneychuk, S. Turner, P. Pobedinskas, S. Drijkoningen, M.K. Van Bael, J.D. Haen, J. Verbeeck, K.C. Leou, I.N. Lin, K. Haenen, Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures. Sci. Rep. 6, 29444 (2016).  https://doi.org/10.1038/srep29444CrossRefGoogle Scholar
  200. 200.
    M.J. Powers. M.C. Benjamin, L.M. Porter, R.J. Nemanich, R.F. Davis, J.J. Cuomo, Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 67, 3912–3914 (1995).  https://doi.org/10.1063/1.115315
  201. 201.
    K.P. Loh, I. Sakaguchi, M.N. Gamo, Surface conditioning of chemical vapor deposited hexagonal boron nitride film for negative electron affinity. Appl. Phys. Lett. 74, 28–30 (1999).  https://doi.org/10.1063/1.123122CrossRefGoogle Scholar
  202. 202.
    K.J. Sankaran, D.Q. Hoang, S. Korneychuk, S. Kunuku, J.P. Thomas, P. Pobedinskas, S. Drijkoningen, M.K. Van Bael, J.D. Haen, J. Verbeeck, K.C. Leou, K.T. Leung, I.N. Lin, K. Haenen, Hierarchical hexagonal boron nitride nanowall–diamond nanorod heterostructures with enhanced optoelectronic performance. RSC Adv. 6, 90338–90346 (2016).  https://doi.org/10.1039/C6RA19596BCrossRefGoogle Scholar
  203. 203.
    J.G. Eden, S.J. Park, N.P. Ostrom, S.T. McCain, C.J. Wagner, B.A. Vojak, J. Chen, C. Liu, P. von Allmen, F. Zenhausern, D.J. Sadler, C. Jensen, D.L. Wilcox, J.J. Ewing, Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: arrays, emitters and photodetectors. J. Phys. D Appl. Phys. 36, 2869–2877 (2003).  https://doi.org/10.1088/0022-3727/36/23/001CrossRefGoogle Scholar
  204. 204.
    S.J. Park, J. Chen, C.J. Wagner, N.P. Ostrom, C. Liu, J.G. Eden, Microdischarge arrays: a new family of photonic devices. IEEE J. Sel. Top. Quantum Electron. 8, 387–394 (2002).  https://doi.org/10.1109/2944.991409CrossRefGoogle Scholar
  205. 205.
    J.G. Eden, S.J. Park, N.P. Ostrom, K.F. Chen, Recent advances in microcavity plasma devices and arrays: a versatile photonic platform. J. Phys. D Appl. Phys. 38, 1644–1648 (2005).  https://doi.org/10.1088/0022-3727/38/11/002CrossRefGoogle Scholar
  206. 206.
    K.H. Becker, K.H. Schoenbach, J.G. Eden, Microplasmas and applications. J. Phys. D Appl. Phys. 39, R55–R70 (2006).  https://doi.org/10.1088/0022-3727/39/3/R01CrossRefGoogle Scholar
  207. 207.
    J.M. Thores, R.S. Dhariwal, Electric field breakdown at micrometer separations. Nanotechnology 10, 102–107 (1999).  https://doi.org/10.1088/0957-4484/10/1/020CrossRefGoogle Scholar
  208. 208.
    R. Dorai, M.J. Kushner, A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 36, 666–685 (2003).  https://doi.org/10.1088/0022-3727/36/6/309CrossRefGoogle Scholar
  209. 209.
    T. Callegari, R. Gante, J.P. Boeuf, Diagnostics and modeling of a macroscopic plasma display panel cell. J. Appl. Phys. 88, 3905–3913 (2000).  https://doi.org/10.1063/1.1308094CrossRefGoogle Scholar
  210. 210.
    S.J. Park, K.F. Chen, N.P. Ostrom, J.G. Eden, 40000pixel40000pixel arrays of ac-excited silicon microcavity plasma devices Appl. Phys. Lett. 86, 111501 (2005).  https://doi.org/10.1063/1.1880441CrossRefGoogle Scholar
  211. 211.
    D. Mariotti, K. Ostrikov, Tailoring microplasma nanofabrication: from nanostructures to nanoarchitectures. J. Phys. D Appl. Phys. 42, 092002 (2009).  https://doi.org/10.1088/0022-3727/42/9/092002CrossRefGoogle Scholar
  212. 212.
    S.S. Yang, J.K. Lee, S.W. Ko, H.C. Kim, J.W. Shon, Two-dimensional kinetic and three-dimensional fluid-radiation transport simulations of plasma display panel. Contrib. Plasma Phys. 44, 536–541 (2004).  https://doi.org/10.1002/ctpp.200410076CrossRefGoogle Scholar
  213. 213.
    H. Wang, G. Li, L. Jia, L. Li, G. Wang, High-temperature anisotropic silicon-etching steered synthesis of horizontally aligned silicon-based Zn2SiO4 nanowires. Chem. Commun. 7, 3786–3788 (2009).  https://doi.org/10.1039/B906787FCrossRefGoogle Scholar
  214. 214.
    P. Kurunczi, J. Lopez, H. Shah, K. Becker, Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions. Int. J. Mass Spectrum. 205, 277–283 (2001).  https://doi.org/10.1016/S1387-3806(00)00377-8CrossRefGoogle Scholar
  215. 215.
    T. Svensson, M. Andersson, L. Rippe, J. Johansson, S. Folestad, S.A. Engels, High sensitivity gas spectroscopy of porous, highly scattering solids. Opt. Lett. 33, 80–82 (2008).  https://doi.org/10.1364/OL.33.000080CrossRefGoogle Scholar
  216. 216.
    M. Saito, T. Hiraga, M. Hattori, S. Murakami, T. Nakai, An investigation of pipeline materials for continuous hyperpolarized 129Xe gas spectroscopy. Magn. Reson. Imaging 23, 607–610 (2005).  https://doi.org/10.1016/j.mri.2005.02.004CrossRefGoogle Scholar
  217. 217.
    L. Que, C.G. Wilson, Y.B. Gianchandani, Microfluidic electrodischarge devices with integrated dispersion optics for spectral analysis of water impurities. J. Microelectromech. Syst. 14, 185–191 (2005).  https://doi.org/10.1109/JMEMS.2004.839337CrossRefGoogle Scholar
  218. 218.
    A.K. Chakraborty, A.J. Golumbfskie, Polymer adsorption-driven self-assembly of nanostructures. Annu. Rev. Phys. Chem. 52, 537–573 (2001).  https://doi.org/10.1146/annurev.physchem.52.1.537CrossRefGoogle Scholar
  219. 219.
    K.H. Schoenbach, M. Moselhy, W. Shi, R. Bentley, Microhollow cathode discharges J. Vac. Sci. Technol. A 21, 1260–1265 (2003).  https://doi.org/10.1116/1.1565154
  220. 220.
    P. Kurunczi, H. Shah, K. Becker, Hydrogen Lyman-α and Lyman-β emission from high-pressure microhollow cathode discharges in Ne-H2 mixtures. J. Phys. B At. Mol. Opt. Phys. 32, L651–L658 (1999).  https://doi.org/10.1088/0953-4075/32/22/103
  221. 221.
    P. von Allmen, D.J. Sadler, C. Jensen, N.P. Ostrom, S.T. McCain, B.A. Vojak, J.G. Eden, Linear, segmented microdischarge array with an active length of ∼1 cm: cw and pulsed operation in the rare gases and evidence of gain on the 460.30 nm transition of Xe+. Appl. Phys. Lett. 82, 4447–4449 (2003).  https://doi.org/10.1063/1.1585137
  222. 222.
    P. von Allmen, S.T. McCain, N.P. Ostrom, B.A. Vojak, J.G. Eden, F. Zenhausern, C. Jensen, M. Oliver, Parallel vacuum arc discharge with microhollow array dielectric and anode Appl. Phys. Lett. 82, 2562–2564 (2003).  https://doi.org/10.1063/1.4890124CrossRefGoogle Scholar
  223. 223.
    J.W. Frame, D.J. Wheeler, T.A. DeTemple, J.G. Eden, Microdischarge devices fabricated in silicon. Appl. Phys. Lett. 71, 1165–1167 (1997).  https://doi.org/10.1063/1.119614CrossRefGoogle Scholar
  224. 224.
    R. Block, O. Toedter, K.H. Schoenbach, Proceedings of the 30th AIAA Plasma Dynamics and Lasers Conference, Norfolk, VA (1999), p. 3434Google Scholar
  225. 225.
    R. Block, M. Laroussi, F. Leipold, K.H. Schoenbach, in Proceedings of 14th International Symposium on Plasma Chemistry, Prague, Czech Republic (1999), p. 945Google Scholar
  226. 226.
    G. Auday, P.H. Guillot, J. Galy, Secondary emission of dielectrics used in plasma display panels. J. Appl. Phys. 88, 4871–4874 (2000).  https://doi.org/10.1063/1.1290461CrossRefGoogle Scholar
  227. 227.
    L.S. Pan, D.R. Kania, Diamond: Electronic Properties and Applications (Klumer Academic, Boston, 1995)CrossRefGoogle Scholar
  228. 228.
    P.K. Bachmann, V. van Elsbergen, D.U. Wiechert, G. Zhong, J. Robertson, CVD diamond: a novel high γ-coating for plasma display panels? Diam. Relat. Mater. 10, 809–817 (2001).  https://doi.org/10.1016/S0925-9635(01)00377-6CrossRefGoogle Scholar
  229. 229.
    K. Chakrabarti, R. Chakrabarrti, K.K. Chattopadhyay, S. Chaudhrui, A.K. Pal, Nano-diamond films produced from CVD of camphor. Diam. Relat. Mater. 7, 845–852 (1998).  https://doi.org/10.1016/S0925-9635(97)00312-9CrossRefGoogle Scholar
  230. 230.
    S. Kunuku, K.J. Sankaran, C.L. Dong, N.H. Tai, K.C. Leou, I.N. Lin, Development of long lifetime cathode materials for microplasma application. RSC Adv. 4, 47865–47875 (2014). https://doi.org/10.1039/C4RA08296FCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kamatchi Jothiramalingam Sankaran
    • 1
  • Ken Haenen
    • 2
    Email author
  1. 1.Institute for Materials Research (IMO)Hasselt UniversityDiepenbeekBelgium
  2. 2.IMOMEC, IMEC vzwDiepenbeekBelgium

Personalised recommendations